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Abstract LRM (Low Rank Modification) is a mathematical method that produces
eigenvalues and eigenstates of generalized eigenvalue equations. It is similar to the
perturbation expansion in that it assumes the knowledge of the eigenvalues and eigen-
states of some related (unperturbed) system. However, unlike perturbation expansion,
LRM produces correct results however large the modification of the original system.
LRM of finite-dimensional systems is here generalized to the combined (external and
internal) modifications. Parent n-dimensional system An containing n eigenvalues λi

and n eigenstates |�i 〉 is described by the generalized n × n eigenvalue equation. In
an external modification system An interacts with another ρ-dimensional system Bρ
which is situated outside the system An . In an internal modification relatively small
σ -dimensional subsystem of the parent system An is modified. Modified system Cn+ρ
that contains external as well as internal modifications is described by the generalized
(n + ρ)× (n + ρ) eigenvalue equation. This system has (n + ρ) eigenvalues εs and
(n + ρ) corresponding eigenstates |�s〉. In LRM this generalized (ρ + n)× (ρ + n)
eigenvalue equation is replaced with a (nonlinear) (ρ + σ)× (ρ + σ) equation which
produces all eigenvalues εs /∈ {λi } and all the corresponding eigenstates |�s〉 of Cn+ρ .
Another equation produces remaining solutions (if any) that satisfy εs ∈ {λi }. Those
two equations produce exact solution of the modified system Cn+ρ . If (ρ+σ) is small
with respect to n, this approach is numerically much more efficient than a standard
diagonalization of the original generalized eigenvalue equation. Unlike perturbation
expansion, LRM produces exact results, however large modification of the parent
system An .
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1 Introduction

Low Rank Modification (LRM) is a general mathematical method by which one can
obtain eigenvalues and eigenstates of a modified quantum system if eigenvalues and
eigenstates of some related parent system are known [1–3]. In this respect this method
is similar to the perturbation expansion which also produces a solution of a perturbed
system if the solution of some related unperturbed system is known [4,5]. However,
there are profound differences between those two methods. Perturbation approach
relies on power series expansion and it is numerically efficient only if the perturba-
tion of the original system is relatively small [4–7]. In addition, if this perturbation is
sufficiently large, power series may diverge and in this case perturbation expansion
fails. However, in many cases of interest are exactly such modifications of the original
system which represent a large perturbation. For example, in a study of the vibrational
isotope effect in the harmonic approximation replacement of an atom by an isotope is
a large perturbation. Similarly, replacement of an atom in a large molecule by a het-
eroatom is also a large perturbation. The same applies to a local defects and impurities
of an infinite solid, etc. Such and similar modifications of the original system cannot
be efficiently treated by the perturbation expansion. Unlike perturbation approach,
LRM produces exact solution (eigenvalues and eigenstates of the modified system),
however large modification of the original parent system. Numerical efficiency of
LRM depends mainly on the rank of the operators that represent modification of this
system, and not on the magnitude of those operators. In addition, LRM applies to
finite-dimensional [1,2] as well as to infinite dimensional systems [3]. It also applies
to time-dependent systems [8,9]. Present paper is restricted to the generalization of
the original LRM approach to the most general modifications of finite-dimensional
systems.

Parent system A can be modified in two different ways. This system can be modi-
fied externally as well as internally. In an external modification system A is modified
by the interaction with another external system B. In an internal modification rela-
tively small portion inside the system A is modified. Previous development of LRM
approach was restricted either to external or to internal modifications of the parent
system. The aim of this paper is to generalize LRM approach to the case when the
finite-dimensional parent system A is simultaneously modified by an arbitrary exter-
nal as well as by an arbitrary internal modification. Generalization of LRM approach
to such combined modifications enables efficient treatment of arbitrary Hermitean
modifications of finite-dimensional systems.

2 Parent system

Consider a finite-dimensional time-independent quantum system An that contains
n eigenvalues λi and n eigenstates |�i 〉. Usually those eigenvalues and eigenstates
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satisfy a standard eigenvalue equation Ha |�i 〉 = λi |�i 〉 (i = 1, . . . , n)where Ha is a
Hermitean operator, Hamiltonian of a system. However, in some cases instead of this
standard eigenvalue equation one has to consider a generalized eigenvalue equation

Ha |�i 〉 = λi Sa |�i 〉, i = 1, . . . , n, (1a)

where Sa is positive-definite Hermitean operator. Eigenvalues λi of (1a) are real and
the corresponding eigenstates |�i 〉 span n-dimensional space Xa

n . Those eigenstates
can be orthonormalized according to (see Appendix)

〈�i |Sa |� j 〉 = δi j , i, j = 1, . . . , n, (1b)

Since the states |�i 〉 form a complete set in Xa
n , expression (1b) implies

Ia =
n∑

i

|�i 〉〈�i |Sa =
n∑

i

Sa |�i 〉〈�i |. (1c)

where Ia is a unit operator in the space Xa
n .

Solution of a generalized eigenvalue Eq. (1a) is for example required in the treatment
of molecular vibrations in the harmonic approximation. In the Cartesian coordinates
this problem leads to the eigenvalue equation F|�i 〉 = λi M|�i 〉 where F and M are
force field and mass operators, respectively [10,11]. Those operators are Hermitean
and in addition operator M is positive definite.

The system An described by the eigenvalue Eq. (1a) will be referred to as a parent
system.

2.1 Internal and external modifications of a parent system

One can modify parent system An in two different ways. One can modify this system
internally or externally.

In the case of an internal modification and in the absence of the external mod-
ification, modified system Cn has the same dimension as the parent system An . In
particular, eigenstates |�s〉 of Cn and eigenstates |�i 〉 of An span the same space Xa

n .
In the most general formulation, internal modification of the parent system is repre-
sented by two operators Va and Pa . Operator Va modifies operator Ha of a parent
system, while operator Pa modifies operator Sa of this system. Those operators are
Hermitean, and they act in the space Xa

n . System Cn which is modified by an internal
modification is hence described by the generalized eigenvalue equation

(Ha + βVa) |�s〉 = εs (Sa + βPa) |�s〉, s = 1, . . . , n.

where β is a coupling parameter. This parameter controls the strength of the internal
modification.

In the LRM approach, the notion of rank and range of modification operators Va

and Pa is important. By definition, range of the operator O that acts in the space X is
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image of this operator [12,13]. In other words, this is the space spanned by all vectors
of the type O|φ〉 where |φ〉 ∈ X . Dimension of this space is rank of O [12,13]. If
operator O is Hermitean, rank of O equals the number (counting degeneracies) of
nonzero eigenvalues of this operator.

Above definition of rank and range of a single operator O can be generalized to
the notion of rank and range of the generalized modification (Va,Pa). By definition,
range of this modification is the space X int

σ spanned by all states of the type Va |φ〉
and by all states of the type Pa |φ〉 where |φ〉 ∈ Xa

n . Dimension of this space is rank
of the generalized modification and it is denoted by σ . One easily finds σ ≤ σh + σs

where σh is the rank of the modification operator Va while σs is the rank of the mod-
ification operator Pa . In particular, if Pa = 0 one has σ = σh , while if Va = 0 one
has σ = σs . One can also consider operator O(x) = Va + xP which depends on a
parameter x and on modification operators Va and Pa . One finds that for almost each
x �= 0 this operator satisfies rank(O(x)) = σ and range(O(x)) = X int

σ . One can
have rank(O(x)) < σ only for some isolated points x = x0. In this case range of
the operator O(x0) is a subspace of X int

σ . The space X int
σ which is the range of the

generalized internal modification is the interaction space. It is that part of the space
Xa

n which is modified by the operators Va and/or Pa .
Let {|μ〉} be a base in the interaction space X int

σ orthonormalized in a standard way

〈μ|ν〉 = δμν, μ, ν = 1, . . . , σ, (2a)

This base can be extended to the orthonormalized base {|α〉} in the space Xa
n :

〈α|β〉 = δαβ, α, β = 1, . . . , n, (2b)

For the sake of reference, labels α and β will refer to the entire space Xa
n , while

labels μ and ν will refer to the interaction space X int
σ , subspace of Xa

n . Base {|μ〉}
considered as a set is a subset of the set {|α〉}. In the base {|α〉} Eq. (1a) is n ×n matrix
eigenvalue equations, while in the base {|μ〉} operators Va and Pa are σ ×σ matrices.
Projection operator Iint on the space X int

σ can be expressed in terms of the vectors |μ〉
as

Iint =
σ∑

μ

|μ〉〈μ|, (2c)

while unit operator Ia in the space Xa
n can be expressed in terms of vectors |α〉 as

Ia =
n∑

α

|α〉〈α|. (2d)
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Since modification operators Va and Pa are nonzero only over the interaction space
X int
σ , those operators satisfy

Va = IintVaIint, Pa = IintPaIint. (3)

As an example of the internal modification, consider replacement of one or several
atoms in a large molecule with isotopes. To a very good approximation, isotopic sub-
stitutions do not change molecular geometry and they have negligible influence on the
molecular electronic structure [10,11]. However, such substitutions have significant
influence on molecular vibrations [10,11]. Given frequencies and normal modes of a
parent molecule An , of interest are frequencies and normal modes of various isotop-
omers Cn of this molecule. If in a large molecule relatively few atoms are substitute
with an isotope, dimension of the corresponding interaction space is relatively small
and in this case LRM is numerically very efficient [14]. Similar examples of internal
modifications are replacements of one or few selected atoms in a large molecule with
heteroatoms, creation and/or destruction of chemical bonds, etc.

In the case of an external modification, system An interacts with another ρ-dimen-
sional system Bρ which is outside the system An . With the system Bρ is associated
ρ-dimensional space Xb

ρ which is orthogonal to the space Xa
n . In analogy to (1a),

system Bρ alone is described by the generalized eigenvalue equation

Hb|r 〉 = Er Sb|r 〉, r = 1, . . . , ρ, (4a)

where Hb and Sb are Hermitean operators that act in the space Xb
ρ and where Sb is in

addition positive definite in this space. No other assumption about those operators is
made. Hermiticity of those operators and positive definiteness of Sb ensures that the
eigenvalues Er of (4a) are real. In analogy to (1b), the corresponding eigenstates |r 〉
can be orthonormalized according to:

〈r |Sb|t 〉 = δr t , r, t = 1, . . . , ρ. (4b)

Since the states |r 〉 form a complete set in Xb
ρ , this implies

Ib =
ρ∑

r

|r 〉〈r |Sb =
ρ∑

r

Sb|r 〉〈r |. (4c)

where Ib is a projection operator on the space Xb
ρ . The system Bρ described by the

eigenvalue Eq. (4a) will be referred to as a base system.
Inclusion of the interaction between initially non-interacting systems Bρ and An

creates a combined (ρ + n)-dimensional system Cn+ρ . Each state in this combined
system is contained in the (ρ+n)-dimensional space Xc

n+ρ , orthogonal sum of spaces
Xb
ρ and Xa

n . Interaction between subsystems Bρ and An of the combined system Cn+ρ
is described by the modification operators V and P. Those operators connect mutually
distinct spaces Xb

ρ and Xa
n , and they vanish over the space Xb

ρ as well as over the
space Xa

n .
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Let {|r〉} be a base in Xb
ρ orthonormalized in a standard way

〈r |t〉 = δr t , r, t = 1, . . . , ρ, (5a)

Projection operator Ib on the space Xb
ρ can be expressed in terms of the vectors |r〉 as

Ib =
ρ∑

r

|r〉〈r |. (5b)

as well as in terms of the eigenstates |r 〉 of the system Bρ according to (4c).
The role of the base space Xb

ρ in the case of an external modification is similar to
the role of the interaction space X int

σ in the case of an internal modification. Note also
that in the absence of the external modification operator Ia is a unit operator since Xa

n
is the entire space considered, while in the presence of the external modification Ia is
a projection operator on the space Xa

n , subspace of the space Xc
n+ρ .

Since operators V and P that describe interaction between systems Bρ and An

have non-vanishing matrix elements only between spaces Xb
ρ and Xa

n , those operators
satisfy

V = IbVIa + IaVIb, P = IbPIa + IaPIb. (6)

A comment concerning quantities σ and ρ is in place here. LRM expressions are
numerically most efficient if those quantities are small with respect to the dimension
n of the space Xa

n , i.e. if (σ + ρ) << n. By definition, quantity σ is the rank of the
generalized internal modification (Va,Pa). The corresponding interaction space X int

σ

is a range of this modification. On the other hand, quantity ρ is the dimension of the
base system Bρ that interacts with the n-dimensional parent system An . By the known
theorem of algebra, rank of the n ×m matrix is at most min(n,m) [12,13]. In a matrix
form operator V is represented by one (ρ, n) and one (n, ρ) nonzero sub-matrix. The
same applies to the operator P. One finds that if n ≥ ρ (which is required in order
for LRM to be numerically efficient) rank of the generalized external modification
(V,P) is at most 2ρ. Dimension ρ of the space Xb

ρ is hence intimately connected with
the rank of this modification. Hence from the more general point of view, external
modifications as well as internal modifications are both low rank modifications.

2.2 Combined modifications of finite-dimensional systems

Modified system Cn+ρ that contains both, internal as well as external modifications
of the parent system, is described by the generalized eigenvalue equation

Hc |�s〉 = εsSc|�s〉, s = 1, . . . , n + ρ, (7a)

where

Hc = Ha + Hb + β (V + Va) , Sc = Sa + Sb + β (P + Pa) , (7b)
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Fig. 1 Combined modifications
of a parent system. a Parent
system An and base system Bρ .
b Modified system Cn+ρ . Parent
system An is modified externally
by the interaction (V,P) with
the base system Bρ , and
internally by modification
operators (Va ,Pa)

and where β is a coupling parameter. This parameter is introduced for convenience, in
order to have more direct control over the strength of the modification. In particular,
if β = 0 expression (7a) reduces to the expressions (1a) and (4a) that describe parent
system An and base system Bρ in isolation, i.e. without mutual interaction. If β is
small one has a small perturbation of the original system and in this case LRM expres-
sions should reduce to the well known expressions obtained within the formalism of
the perturbation expansion. However if β is large, LRM produces qualitatively new
results which cannot be obtained within a standard perturbation expansion [2,3].

Operators Hc and Sc in expressions (7b) are by construction Hermitean. In addition,
in order to guarantee the reality of the modified eigenvalues εs , operator Sc is required
to be positive definite in the (n + ρ)-dimensional combined space Xc

n+ρ . Eigenstates
|�s〉 of (7a) can be hence orthonormalised according to

〈�s |Ss |�p〉 = δsp, s, p = 1, . . . , n + ρ. (7c)

Since operators Sa and Sb are positive-definite in spaces Xa
n and Xb

ρ , respectively,
if β is sufficiently small operator Sc is guaranteed to be positive definite in the com-
bined space Xc

n+ρ . However, depending on the modification operators P and Pa , as β
increases for some sufficiently large β this may be not the case. Condition that operator
Sc should be positive definite hence imposes some restrictions on the operators P and
Pa , as well as on the parameter β. For example, if P = Pa = 0 operator Sc is positive
definite for each β, however large. However, if P �= 0 and/or Pa �= 0, this is not
necessarily so. Concerning modification operators V and Va , there are no restrictions
on those operators, except that they should be Hermitean and that they should satisfy
expressions (6) and (3), respectively.

Combined modification of a parent system An is shown schematically in Fig. 1
Each eigenstate |�s〉 of (7a) can be written as a linear combination

|�s〉 = |�a
s 〉 + |θs〉, (8a)

where

|�a
s 〉 = Ia |�s〉 ∈ Xa

n , |θs〉 = Ib|�s〉 ∈ Xb
ρ, (8b)
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are projections of this eigenstate on subspaces Xa
n and Xb

ρ , respectively. One can
consider also the state |ϕs〉

|ϕs〉 = Iint|�s〉 ∈ X int
σ . (8c)

which is a projection of the eigenstate |�s〉 on the interaction space X int
σ . In bases {|μ〉}

and {|r〉} components |ϕs〉 and |θs〉 of the modified eigenstate |�s〉 can be written as

|ϕs〉 =
σ∑

μ

C (s)
μ |μ〉, |θs〉 =

ρ∑

r

B(s)r |r〉. (9)

3 LRM treatment of the combined modification

Consider combined modification of the n-dimensional parent system An described
by the generalized eigenvalue Eq. (1a). This system is modified externally with the
generalized modification (V,P) that satisfies expressions (6) and internally with the
generalized modification (Va,Pa) that satisfies expressions (3). Combined system
Cn+ρ is described by the generalized eigenvalue Eq. (7a). In analogy to the perturba-
tion expansion, one assumes that eigenvalues λi and eigenstates |�i 〉 of the system An

are known. From those quantities one can construct Hermitean operator �(ε) which
depends on a real parameter ε:

�(ε) =
n∑

i(λi �=ε)

|�i 〉〈�i |
ε − λi

. (10)

If ε equals some eigenvalue λi of the eigenvalue Eq. (1a) (ε = λi ), the correspond-
ing term or terms is excluded from the summation in (10).

Operator �(ε) is associated with the parent system An and it acts in the space
Xa

n of this system. Since {|�i 〉} is a complete set in Xa
n , in the case ε /∈ {λi } one

has �(ε)|ψ〉 �= 0 for each nonzero state |ψ〉 ∈ Xa
n . Operator �(ε) is in this case

nonsingular in Xa
n and hence rank

(
�(ε)

) = n. However, if ε = λ j ∈ {λi } one has
�(ε)|� j 〉 = 0 and in this case rank

(
�(ε)

)
< n.

With the base system Bρ that interacts externally with the parent system An is
associated Hermitean operator �b(ε)

�b(ε) = (V − εP)�(ε)(V − εP), (11a)

This operator is a key quantity in the LRM formalism involving external modifi-
cations of finite dimensional quantum systems. Due to the expressions (6), operator
�b(ε) has non-vanishing matrix elements only between the states contained in the
base space Xb

ρ . Over the parent space Xa
n this operator vanishes. In the base {|r〉} of

the space Xb
ρ this operator is a ρ × ρ matrix with matrix elements
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�b
rt (ε) ≡ 〈r |�b(ε)|t〉 =

n∑

i(λi �=ε)

〈r |V − εP|�i 〉〈�i |V − εP|t〉
ε − λi

, r, t = 1, . . . , ρ.

(11b)

In analogy to (11), with the internal modification of the parent system An is asso-
ciated Hermitean operator �a(ε)

�a(ε) = (Va − εPa)�(ε)(Va − εPa), (12a)

This operator is a key quantity in the LRM formalism involving internal modifi-
cations of finite dimensional quantum systems. Due to the expressions (3), operator
�a(ε) has non-vanishing matrix elements only between the states contained in the
interaction space X int

σ . In the base {|μ〉} of this space this operator is a σ × σ matrix
with matrix elements

�a
μν(ε) ≡ 〈μ|�a(ε)|ν〉

=
n∑

i(λi �=ε)

〈μ|Va − εPa |�i 〉〈�i |Va − εPa |ν〉
ε − λi

, μ, ν = 1, . . . , σ.

(12b)

Finally in the case of the combined modification, in addition to the operators �a(ε)

and �b(ε) one has to consider operators �ab(ε) and �ba(ε). Operator �ab(ε) is
defined as

�ab(ε) = (Va − εPa)�(ε)(V − εP), (13a)

This operator connects σ -dimensional interaction space X int
σ with the ρ-dimensional

space Xb
ρ of the base system Bρ . It has matrix elements

�ab
μr (ε) ≡ 〈μ|�ab(ε)|r〉 =

n∑

i(λi �=ε)

〈μ|Va − εPa |�i 〉〈�i |V − εP|r〉
ε − λi

,

μ = 1, . . . , σ, r = 1, . . . , ρ. (13b)

Operator �ba(ε) is a complex conjugate of the operator �ab(ε):

�ba(ε) = �ab(ε)
∗ = (V − εP)�(ε)(Va − εPa). (13c)

Note that operators �ab(ε) and �ba(ε) are not Hermitean. However, the sum �ab(ε)+
�ba(ε) of those operators is Hermitian.

In order to construct operator �(ε) according to the expression (10), one has to
know all n eigenvalues λi of a parent system and in addition one should have a com-
plete knowledge about all the corresponding eigenstates |�i 〉. However, in order to
construct operators �a(ε),�b(ε) and �ab(ε) it is not necessary to have complete
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information about eigenstates |�i 〉 of An . In particular, in order to construct opera-
tor �b(ε) associated with a base system Bρ one has to know 2ρn matrix elements
〈r |V|�i 〉 and 〈r |P|�i 〉(r = 1, . . . , ρ; i = 1, . . . , n) as well as n eigenvalues λi of
the parent system. This makes a total of (2ρ + 1)n quantities. Similarly, in order to
construct operator �a(ε) associated with the interaction space X int

σ one has to know
2σn matrix elements 〈μ|Va |�i 〉 and 〈μ|Pa |�i 〉(μ = 1, . . . , σ ; i = 1, . . . , n) as well
as the same n eigenvalues λi of the parent system. In order to construct operator �ab(ε)

in addition to operators �a(ε) and �b(ε), no new quantities are required. Hence in
order to construct all three operators one has to know only (2ρ+ 2σ + 1)n quantities.
On the other hand, in order to specify all n eigenstates |�i 〉 of An one has to know
n2 matrix elements 〈α|�i 〉(α = 1, . . . , n; i = 1, . . . , n). Hence if (ρ + σ) << n,
construction of the operators �a(ε),�b(ε) and �ab(ε) requires much less information
than exact specification of all eigenstates |�i 〉 of (1a).

For the sake of simplicity, operators that act in spaces Xa
n , Xb

ρ, X int
σ and Xc

n+ρ
will be identified with their representations in bases, {|α〉} , {|r〉} , {|μ〉} and {|r〉, |α〉},
respectively. For example, representation of the operator Ib in the base {|r〉} is a unit
matrix with matrix elements δr t (r, t = 1, . . . , ρ). Considered as the operator in the
space Xc

n+ρ, Ib is a projection operator on the space Xb
ρ , subspace of the space Xc

n+ρ .
Strictly, this identification is not allowed. However, from the context it is usually
clear whether O denotes an operator or a representation of this operator in the space
Xa

n , Xb
ρ, X int

σ or Xc
n+ρ .

In the case of finite-dimensional systems each eigenvalue εs = εs(β) of a perturbed
system, considered as a function of a coupling parameter β, can be connected in a
continuous way with some unperturbed eigenvalue εs(0). This unperturbed eigen-
value coincides either with some eigenvalue λi of a parent system An , and/or with
some eigenvalue Er of a base system Bρ . Solutions of the perturbed system that are
in this way connected with non-degenerate eigenvalues of the original system are
treated differently from those solutions of the perturbed system that are connected
with degenerate eigenvalues of the original system. Hence perturbation treatment
of degenerate eigenstates differs from the perturbation treatment of non-degenerate
eigenstates [4–7]. In this respect there are major differences between a perturbation
approach and a LRM approach. In the LRM approach one treats in a different way car-
dinal (εs /∈ {λi }) and singular (εs ∈ {λi }) eigenvalues and corresponding eigenstates
of the modified system [2,3,14,15]. This distinction is qualitatively different from
the distinction between degenerate and non-degenerate eigenstates in the perturbation
theory. In the case of LRM cardinal solutions, all what is required is that modified
eigenvalue εs should differ from all eigenvalues λ j of the parent system An , though it
may coincide with some eigenvalue Er of a base system Bρ . On the other hand, each
singular eigenvalue εs of the modified system coincides with some eigenvalue λ j of
the parent system. Singular solutions are thus rather special solutions of the modified
system.

3.1 Cardinal solutions of the modified system

As shown in the Appendix, concerning cardinal solutions of Cn+ρ one has:
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Theorem 1 (cardinal eigenvalues and eigenstates)
Let eigenstates |�i 〉 of (1a) be orthonormalized according to (1b) and let β �= 0. Then
(a) εs /∈ {λi } is a cardinal eigenvalue of the modified eigenvalue Eq. (7a) if and only
if it satisfies

[
β2�b(εs)+ Hb − εsSb β2�ba(εs)

β2�ab(εs) β2�a(εs)+ β (εsPa − Va)

] ∣∣∣∣
θs

ϕs

∣∣∣∣ = 0, (14a)

where

|θs〉 ∈ Xb
ρ, |ϕs〉 ∈ X int

σ , (14b)

and where the eigenstate |�s〉 ≡ |θs〉+ |ϕs〉 of (14a) is not zero. In other words, either
|θs〉 �= 0 and/or |ϕs〉 �= 0.

In the base {|r〉, |μ〉} expression (14a) is a (ρ + σ) × (ρ + σ) matrix equation.
Each cardinal eigenvalue εs /∈ {λi } of (7a) is hence a root of the (ρ + σ)× (ρ + σ)

determinant h(ε)

h(ε) ≡
∣∣∣∣
β2�b(ε)+ Hb − εSb β2�ba(ε)

β2�ab(ε) β2�a(ε)+ β (εPa − Va)

∣∣∣∣ = 0. (14c)

(b) |�s〉 is an eigenstate of the eigenvalue Eq. (7a) with the eigenvalue εs /∈ {λi } if
and only if it is a linear combination

|�s〉 = β

n∑

i

〈�i |V − εsP|θs〉 + 〈�i |Va − εsPa |ϕs〉
εs − λi

|�i 〉 + |θs〉, (15a)

where the states |θs〉 and |ϕs〉 are obtained as a solution to (14a) that corresponds to
the eigenvalue ε = εs .

(c) Projection of the cardinal eigenstate (15a) on the base space Xb
ρ equals |θs〉,

while projection of this eigenstate on the interaction space X int
σ equals |ϕs〉:

Ib|�s〉 = |θs〉 ∈ Xb
ρ, Iint|�s〉 = |ϕs〉 ∈ X int

σ . (15b)

Above theorem produces all cardinal eigenvalues and eigenstates of the modified
system. Note that the key LRM Eq. (14a) which produces those solutions is manifestly
Hermitean.

Concerning degenerate cardinal solutions, as shown in the Appendix one has

Lemma 1 Let |�sk〉(k = 1, . . . κ) be κ degenerate cardinal eigenstates of the modi-
fied system that have eigenvalue εs /∈ {λi }. Those eigenstates are linearly independent
if and only if the corresponding eigenstates |�sk〉 = |θsk〉 + |ϕsk〉(k = 1, . . . κ) of the
LRM Eq. (14a) are linearly independent.
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According to this lemma, degeneracy of cardinal eigenvalue εs /∈ {λi } of the mod-
ified system Cn+ρ equals nullity of the matrix that determines LRM Eq. (14a). Since
this is a (ρ+ σ)× (ρ+ σ)matrix, each cardinal eigenvalue εs /∈ {λi } of the modified
system Cn+ρ can be at most (ρ + σ)-degenerate.

Since operators �a(ε),�b(ε) and �ab(ε) depend on the parameter ε, LRM expres-
sion (14a) is a nonlinear eigenvalue equation. According to (15b), eigenstate |�s〉 =
|θs〉+|ϕs〉 of this equation determines projections of the corresponding cardinal eigen-
state |�s〉 of the modified system on spaces Xb

ρ and X int
σ , respectivelly. In conclusion,

Eq. (14a) is a (ρ + σ) × (ρ + σ) nonlinear equation that acts entirely in the base
space Xb

ρ and in the interaction space X int
σ . However, though this equation acts only

in those two spaces, it determines according to (15a) complete cardinal eigenstate
|�s〉 ∈ Xc

n+ρ of the modified system Cn+ρ .
Unlike LRM Eq. (14a) which is a (ρ + σ)× (ρ + σ) nonlinear equation, original

eigenvalue Eq. (7a) that describes modified system Cn+ρ is a (ρ + n) × (ρ + n)
linear eigenvalue equation. However large dimension n of the parent system An ,
dimension of the corresponding LRM Eq. (14a) is still only (ρ + σ). Nevertheless,
this LRM equation produces exact solutions of the (ρ + n) × (ρ + n) eigenvalue
Eq. (7a).

Theorem 1 produces all cardinal eigenstates of the modified system in the case
β �= 0. In the trivial case β = 0 LRM formalism implies that cardinal eigenstates
of the modified system Cn+ρ are those eigenstates |s〉 of Bρ that have eigenvalue
Es /∈

{
λ j

}
(see Appendix). This is in complete agreement with the definition of cardi-

nal solutions. Namely if β = 0 all eigenstates |� j 〉 of An as well as all eigenstates |s〉
of Bρ are at the same time eigenstates of Cn+ρ with the same eigenvalues. Since by
definition cardinal eigenstates of modified system are those eigenstates of this system
that have eigenvalue εs /∈

{
λ j

}
, it follows that in the case β = 0 cardinal eigenstates

of the modified system are those and only those eigenstates |s〉 of Bρ that have
eigenvalue Es /∈

{
λ j

}
.

3.2 Singular solutions of the modified system

By definition, each singular eigenvalue εs of the modified system Cn+ρ coincides with
some eigenvalue λ j of the parent system An : εs ≡ λ j ∈ {λi }. Concerning singular
eigenvalues and eigenstates of the modified system, as shown in the Appendix one
has:

Theorem 2 (singular solutions)
Let λ j be a η j -degenerate eigenvalue of the eigenvalue Eq. (1a) and let X j

η j be the cor-
responding η j -dimensional space spanned by η j degenerate eigenstates |� jm〉(m =
1, . . . , η j ) of (1a). Let further I j be the projection operator on the space X j

η j and let
β �= 0. Then:

(a) εs = λ j ∈ {λi } is a singular eigenvalue of the modified eigenvalue Eq. (7a) if
and only if it satisfies
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⎡

⎣
β2�b(λ j )+ Hb − λ j Sb β2�ba(λ j ) β

(
V − λ j P

)
I j

β2�ab(λ j ) β2�a(λ j )+ β
(
λ j Pa − Va

)
β

(
Va − λ j Pa

)
I j

βI j
(
V − λ j P

)
βI j (Va − λ j Pa) 0

⎤

⎦

×
⎡

⎣
θs

ϕs

χ
j

s

⎤

⎦ = 0, (16a)

where

|θs〉 ∈ Xb
ρ, |ϕs〉 ∈ X int

σ , |χ j
s 〉 ∈ X j

η j
. (16b)

and where the eigenstate |�s〉 ≡ |θs〉 + |ϕs〉 + |χ j
s 〉 of (16a) is not zero.

(b) Each singular eigenstate |�s〉 of the modified system Cn+ρ that has eigenvalue
εs = λ j ∈ {λi } is a linear combination

|�s〉 = β
∑

i(λi �=λ j )

〈�i |V − λ j P|θs〉 + 〈�i |Va − λ j Pa |ϕs〉
λ j − λi

|�i 〉 + |χ j
s 〉 + |θs〉.

(16c)

where the states |θs〉, |ϕs〉 and |χ j
s 〉 satisfy (16a) and (16b).

(c) Projection of the singular eigenstate (16c) on the space Xb
ρ equals |θs〉, while

projection of this eigenstate on the interaction space X int
σ equals |ϕs〉:

Ib|�s〉 = |θs〉 ∈ Xb
ρ, Iint|�s〉 = |ϕs〉 ∈ X int

σ , (17a)

In addition, the state |χ j
s 〉 ∈ X j

η j in (16c) is a linear combination

|χ j
s 〉 =

η j∑

m

|� jm〉〈� jm |Sa |�s〉 ≡ O j |�s〉 ∈ X j
η j
, (17b)

where operator O j satisfies

O j =
η j∑

m

|� jm〉〈� jm |Sa, (O j )
2 = O j . (17c)

In the special and most important case when Sa = Ia is a unit operator in the
space Xa

n , operator O j equals projection operator I j . In this case the state |χ j
s 〉 equals

projection of the singular eigenstate |�s〉 on the space X j
η j . However, in a general case

operator O j is not necessarily Hermitean and one has O j �= I j , though for each state

|�〉 ∈ X j
η j those two operators still satisfy I j |�〉 = O j |�〉 = |�〉.
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Note that the key LRM expression (16a) which produces singular solutions is man-
ifestly Hermitean. In a matrix form, this expression forms a set of (ρ + σ + η j )

homogenous linear equations in (ρ+σ +η j ) unknowns, ρ unknown coefficients B(s)r

that determine the state |θs〉 ∈ Xb
ρ, σ unknown coefficients C (s)

μ that determine the state

|ϕs〉 ∈ X int
σ , and η j unknown coefficients D(s)

m that determine the state |χ j
s 〉 ∈ X j

η j :

|θs〉 =
ρ∑

r

B(s)r |r〉, |ϕs〉 =
σ∑

μ

C (s)
μ |μ〉, |χ j

s 〉 =
η j∑

m

D(s)
m |� jm〉. (18)

As shown in the Appendix, linearly independent solutions of (16a) produce linearly
independent eigenstates |�s〉 of Cn+ρ , and vice versa. Hence:

Lemma 2 Let |�sk〉(k = 1, . . . κ) be κ degenerate singular eigenstates of the mod-
ified system that have eigenvalue εs = λ j ∈ {λi }. Those eigenstates are linearly

independent if and only if the corresponding eigenstates |�sk〉 ≡ |θsk〉+ |ϕsk〉+ |χ j
sk〉

(k = 1, . . . κ) of the LRM Eq. (16a) are linearly independent.

According to this lemma, degeneracy of singular eigenvalue εs = λ j ∈ {λi } of
the modified system Cn+ρ equals nullity of the matrix that determines eigenvalue
Eq. (16a). Since this is a (ρ + σ + η j ) × (ρ + σ + η j ) matrix, singular eigenvalue
εs = λ j ∈ {λi } can be at most (ρ + σ + η j )-degenerate.

Theorem 2 produces all singular eigenstates of the modified system in the case
β �= 0. In the trivial case β = 0 LRM formalism implies that each eigenstate |� j 〉 of
a parent system An is a singular eigenstate of a modified system Cn+ρ . In addition,
if eigenvalue Es of a base system Bρ coincides with some eigenvalue λ j of a par-
ent system, the corresponding eigenstate |s〉 of Bρ is also singular eigenstate of the
modified system Cn+ρ . This is in complete agreement with the definition of singular
solutions. Namely if β = 0 all eigenstates |� j 〉 of An are at the same time eigenstates
of Cn+ρ with the same eigenvalue. Hence by definition those solutions of Cn+ρ are
singular. The same applies to each eigenstates |s〉 of Bρ , provided the corresponding
eigenvalue Es satisfies Es ∈ {

λ j
}
.

Treatment of singular solutions of the modified system is highly simplified by the
clear distinction between strongly singular and weakly singular eigenstates of this
system. By definition, strongly singular eigenstate |�s〉 of the eigenvalue Eq. (7a) has
no component in the base space Xb

ρ and no component in the interaction space X int
σ .

Hence this eigenstate satisfies Ib|�s〉 = Iint|�s〉 = 0. On the other hand, each weakly
singular eigenstate |�s〉 of the modified system satisfies either Ib|�s〉 �= 0 and/or
Iint|�s〉 �= 0. In addition, each weakly singular eigenstate of this system is required
to be orthogonal to all strongly singular eigenstates.

As shown in the Appendix, weakly singular eigenstates satisfy:

Lemma 3 Let |�s〉 be weakly singular eigenstate of the modified system with the
eigenvalue εs = λ j . Component |χ j

s 〉 ∈ X j
η j of this eigenstate is uniquely determined

by components Ib|�s〉 = |θs〉 ∈ Xb
ρ and Iint|�s〉 = |ϕs〉 ∈ X int

σ of this eigenstate.
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Since Xb
ρ is ρ-dimensional while X int

σ is σ -dimensional, Lemmas 2 and 3 imply
that the space spanned by all weakly singular eigenstates with the eigenvalue εs = λ j

is at most (ρ + σ)-dimensional. In addition, Lemma 3 and Theorem 2 imply:

Theorem 2a Let λ j be a η j -degenerate eigenvalue of the eigenvalue Eq. (1a) and let

X j
η j be the corresponding η j -dimensional space spanned by η j degenerate eigenstates

|� jm〉(m = 1, . . . , η j ) of (1a). Let further I j be the projection operator on the space

X j
η j and let β �= 0. Then:
(a) |�s〉 is strongly singular eigenstate of the eigenvalue Eq. (7a) with the eigen-

value εs = λ j if and only if it is contained in the space X j
η j

|�s〉 ≡ |χ j
s 〉 ∈ X j

η j
, (19a)

and if in addition it satisfies

(V − εsP)I j |χ j
s 〉 = 0, (Va − εsPa)I j |χ j

s 〉 = 0. (19b)

This state is hence a linear combination

|�s〉 =
η j∑

m

|� jm〉〈� jm |Sa |�s〉 =
η j∑

m

D(s)
m |� jm〉, (20a)

where the coefficients D(s)
m satisfy (ρ + σ) linear conditions

η j∑
m

〈r |V − εsP|� jm〉D(s)
m = 0, r = 1, . . . , ρ,

η j∑
m

〈μ|Va − εsPa |� jm〉D(s)
m = 0, μ = 1, . . . , σ.

(20b)

The set of all strongly singular eigenstates with the eigenvalue εs = λ j spans

some r j -dimensional space X j−
r j , subspace of the space X j

η j . Since the space X j
η j is

η j -dimensional, expressions (20b) imply

η j − ρ − σ ≤ r j ≤ η j . (21)

In particular, one may have at most η j linearly independent strongly singular eigen-
states with the eigenvalue εs = λ j .

(b) |�s〉 is weakly singular eigenstate of the generalized eigenvalue Eq. (7a) with
the eigenvalue εs = λ j if and only if it is a linear combination (16c) where the states

|θs〉, |ϕs〉 and |χ j
s 〉 satisfy (16a) and where either |θs〉 �= 0 and/or |ϕs〉 �= 0. In addition,

each weakly singular eigenstate is required to be orthogonal to all strongly singular
eigenstates. Due to Lemma 3, one can have at most ρ+σ linearly independent weakly
singular eigenstates with the eigenvalue εs = λ j .
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According to the above Theorem, there is a substantial qualitative difference between
strongly and weakly singular eigenstates of the modified system. Inequalities (21)
imply that if degeneracy η j of the eigenvalue λ j of the parent system An satisfies
η j > ρ + σ , modified system Cn+ρ has at least η j − ρ − σ linearly independent
strongly singular eigenstates with the eigenvalue εs = λ j . If this degeneracy is large,
one may have very many strongly singular eigenstates with this eigenvalue. According
to the expressions (20), those eigenstates do not depend on the coupling parameter
β, and they exist for each value of this parameter. Further, each strongly singular
eigenstate |�s〉 of the modified system Cn+ρ is at the same time an eigenstate of
the parent system An with the same eigenvalue. Accordingly, modification operators
V,P,Va and Pa have no influence on strongly singular eigenstates. On the other hand,
each weakly singular eigenstate |�s〉 depends on a coupling parameter β as well as
on those modification operators. Unlike strongly singular eigenstates of the modified
system, each weakly singular eigenstate of this system differs from all eigenstates of
the parent system An . In addition, modified system may have at most ρ + σ weakly
singular eigenstates with the eigenvalue εs = λ j , however large degeneracy η j of the
eigenvalue λ j .

Weakly singular eigenstates are rather special eigenstates of the modified system.
Each such eigenstate is obtained as a solution to (16a) where either |θs〉 �= 0 and/or
|ϕs〉 �= 0. Expression (16a) is a set of

(
ρ + σ + η j

)
homogenous linear equations in(

ρ + σ + η j
)

unknowns that determine the states |θs〉, |ϕs〉 and |χ j
s 〉. However, in the

case of weakly singular eigenstates, the state |χ j
s 〉 is completely determined by the

states |θs〉 and |ϕs〉. As a consequence, expression (16a) provides
(
ρ + σ + η j

)
con-

ditions in only (ρ + σ) unknowns. This expression is hence highly over-determined,
especially if degeneracy η j of the parent eigenvalue λ j is large. Only by chance or
due to some special reason this expression can have a nontrivial solution. This latter
possibility implies that modified system Cn+ρ should posses some symmetry elements
not contained in the set of its two non-interacting subsystems An and Bρ . Unless this
is the case, modified system Cn+ρ can only by pure accident (which is very unlikely)
have some weakly singular eigenstates.

Above two theorems produce all solutions of the modified system Cn+ρ in the
nontrivial case β �= 0. All cardinal eigenvalues εs /∈ {λi } of the modified eigenvalue
Eq. (7a) are roots of the function h(ε) (expression 14c). Once a particular root εs of
h(ε) is found, the corresponding eigenstate (or eigenstates) is given by the expression
(15a) where the states |θs〉 ∈ Xb

ρ and |ϕs〉 ∈ X int
σ satisfy (14a). Concerning remaining

singular eigenvalues εs ∈ {λi } and corresponding eigenstates, it is rather straight-
forward to verify expressions (20) which produce all strongly singular eigenstates
with this eigenvalue. If all solutions of the modified system Cn+ρ are required, in
the numerical implementation of LRM approach one has first to calculate all cardinal
solutions of this system. This can be done using expressions (14) and (15). If there
are (n + ρ) such solutions LRM calculation is completed, since modified system has
exactly (n + ρ) solutions. However if there are less than (n + ρ) linearly independent
cardinal solutions, one has to calculate strongly singular solutions using expressions
(20). Only if the total number of all cardinal plus all strongly singular solutions is still
less than (n + ρ), one has to look for weakly singular solutions.
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3.3 Normalization of modified eigenstates

Cardinal eigenstate |�s〉 as given by the expression (15a) is not normalized. This can
be easily done according to

|�s〉 → |� ′
s〉 = 1√

Ns
|�s〉, (22a)

where

Ns = 〈�s |Sc|�s〉. (22b)

and where |�s〉 is given by (15a). Using (15a) and (7b) one finds that normalization
constant Ns equals

Ns = 〈�a
s |Sa |�a

s 〉 + 〈θs |Sb|θs〉 + β
{〈ϕs |Pa |ϕs〉 + 〈�a

s |P|θs〉 + 〈θs |P|�a
s 〉} ,

(23a)

As shown in the Appendix, matrix elements 〈�a
s |Sa |�a

s 〉 and 〈�a
s |P|θs〉 which involve

Xa
n component |�a

s 〉 of the cardinal eigenstate |�s〉 can be expressed in terms of matrix
elements involving only the states |θs〉 and |ϕs〉:

〈�a
s |Sa |�a

s 〉 = −β2 [〈θs |(V − εsP)+ 〈ϕs |(Va − εsPa)]

×d�(εs)

dε
[(V − εsP)|θs〉 + (Va − εsPa)|ϕs〉] (23b)

〈�a
s |P|θs〉 = β [〈θs |(V − εsP)+ 〈ϕs |(Va − εsPa)] �(εs)P|θs〉. (23c)

This can be written in the explicit form

〈�a
s |Sa |�a

s 〉 = β2
n∑

i

|〈�i |V − εsP|θs〉 + 〈�i |Va − εsPa |ϕs〉|2
(εs − λi )

2 , (24a)

〈�a
s |P|θs〉 = β

n∑

i

〈θs |V − εsP|�i 〉 + 〈ϕs |Va − εsPa |�i 〉
εs − λi

〈�i |P|θs〉. (24b)

According to the above expressions, in order to normalize cardinal eigenstate
|�s〉 ∈ Xc

n+ρ it is not necessary to know all fine details of this eigenstate. LRM
expression (14a) produces the states |θs〉 and |ϕs〉 as well as the corresponding eigen-
value εs . In connection with known eigenvalues λi of An and known matrix elements
〈r |V|�i 〉, 〈r |P|�i 〉, 〈μ|Va |�i 〉 and 〈μ|Pa |�i 〉, those quantities uniquely determine
normalization constant Ns . Hence, though cardinal eigenstate |�s〉 extends over the
entire (n + ρ)-dimensional space Xc

n+ρ , one can normalize this eigenstate using only
projections of this eigenstate on much smaller spaces Xb

ρ and X int
σ . This independence

of the normalization constant Ns on the details of the space Xa
n is an important feature

of the LRM approach.
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Expressions (23) and (24) apply to a most general case when all modification
operators differ from zero. In many special but important cases those expressions sub-
stantially simplify. Most important is the case when modification operators Pa and P
vanish. If Pa = P = 0 expressions (23) and (24) reduce to

Ns = β2
n∑

i

|〈�i |V|θs〉 + 〈�i |Va |ϕs〉|2
(εs − λi )

2 + 〈θs |Sb|θs〉. (24′)

Consider now strongly singular eigenstates (20). In the case of those eigenstates
normalization constant Ns equals

Ns ≡ 〈�s |Sa + βPa |�s〉 =
η j∑

m

|D(s)
m |2 + β

∑

m,m′
D(s)

m D(s)
m′ 〈� jm′ |Pa |� jm〉, (25a)

where strongly singular eigenstate |�s〉 is given by (20a).
Normalization of strongly singular eigenstates also simplifies in some special cases.

In particular, if modification operator Pa vanishes, expression (25a) reduces to

Ns =
η j∑

m

|D(s)
m |2. (25b)

Note that strongly singular eigenstate |�s〉 with the eigenvalue εs = λ j is con-

tained in the subspace X j
η j of the space Xa

n and it has no X int
σ and no Xb

ρ components.
There is hence substantial qualitative difference between normalization of cardinal
eigenstates and normalization of strongly singular eigenstates of the modified system.
Normalization of cardinal eigenstate |�s〉 depends on the X int

σ and Xb
ρ projections of

this eigenstate. On the other hand, normalization of strongly singular eigenstate |�s〉
does not depend on those projections, since in the case of strongly singular eigenstates
those projections are zero.

Concerning weakly singular eigenstates, those eigenstates can be normalized in
a similar way as cardinal eigenstates, and normalization of those eigenstates again
depends on their X int

σ and Xb
ρ components.

3.4 Numerical considerations

Consider now efficiency of the LRM approach from the numerical point of view. In
order to obtain a single cardinal eigenvalue εs /∈ {λi } of the modified system Cn+ρ ,
one has to derive this eigenvalue as a root of the (ρ + σ) (ρ + σ) determinant (14c).
Assume that (ρ + σ) is relatively small with respect to n. Operation count for the
calculation of the determinant (14c) is dominated by the calculation of the matrix
elements of the operators �b(ε),�a(ε) and �ab(ε). There are (ρ + σ)2 such matrix
elements and according to the expressions (11b), (12b) and (13b), calculation of each
of those matrix element is of the order O (n). A single calculation of the determinant
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(14c) is hence of the order O
(
n (ρ + σ)2

)
. In order to obtain a single root of (14c)

one has to perform several calculations of this determinant. However, the number
of those calculations is on average independent on the size of the problem, i.e. it is
independent on n, on ρ and on σ . Operation count required to obtain a single LRM
cardinal eigenvalue is hence of the order O

(
n (ρ + σ)2

)
. Once cardinal eigenvalue

εs /∈ {λi } is known, operational count required to derive the states |θs〉 and |ϕs〉 using
the expression (14a) is of the order O

(
(ρ + σ)3

)
. There is also an additional operation

count of the order O (n (ρ + σ)) required to construct the eigenstate|�s〉 according
to (15a), once the states |θs〉 and |ϕs〉 are known. Since by assumption (ρ + σ) << n,
those operation counts are negligible with respect to the operational count required to
obtain cardinal eigenvalue εs /∈ {λi } in the first place. Concerning strongly singular
eigenstates, operation count required to obtain all strongly singular eigenstate with a

particular eigenvalue λ j is of the order O
(
η3

j

)
. Since in almost all cases η j << n, this

is usually negligible relative to the operation count required to derive a single cardinal
eigenstate. Concerning weakly singular eigenstates, there are usually only very few
such eigenstates, if any. Operation count required to obtain all solutions of the modi-
fied system is hence dominated by the operation count required to obtain all cardinal
solutions, which is of the order O

(
n2(ρ + σ)2

)
. In comparison, standard diagonaliza-

tion of the eigenvalue Eq. (7a) has operation count O
(
(n + ρ)3

) ≈ O(n3) [12,13].
Hence if (ρ + σ) <<

√
n, LRM will be numerically more efficient than standard

diagonalization. Additional advantage of LRM is that it can produce selected solu-
tions with the operational count O

(
n(ρ + σ)2

)
which is ≈ n times smaller, while

no known diagonalization method produces selected solutions of (7a) with the opera-
tional count as low as O(n2). Hence if only few selected solutions of the eigenvalue
Eq. (7a) are required, LRM will be even more efficient in comparison with other pos-
sible approaches. Concerning various perturbation methods, those methods are only
approximate and they are efficient only if the coupling parameter β is relatively small.
Hence if the modification of the parent system is not small and if (ρ + σ) <<

√
n,

LRM approach will be numerically superior to standard diagonalization methods as
well as to various perturbation expansion approaches.

4 Numerical examples

Let me illustrate LRM treatment of a combined modification of a parent system with
two examples. In order to emphasize essential features of this approach, those exam-
ples are necessarily simple. They are intended to illustrate LRM approach, and not to
obtain particularly realistic solution of a given problem.

4.1 Combined modification of benzene molecule in the Hückel approximation

As a first example consider combined modification of a benzene molecule within
a Hückel approximation (See Fig. 2). Within this approximation, parent system A6
that represents benzene is six-dimensional. This system is described by a standard
eigenvalue equation
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Fig. 2 Modification of the benzene molecule in the Hückel approximation. a Benzene molecule is a six-
dimensional parent system A6 and ethylene molecule is a two-dimensional base system B2. b Modified
system C8. Parent system A6 is modified externally by the interaction with the base system B2 (creation
of the bond 1–7), and internally by the heteroatom X introduce at the position of the carbon atom C4

Ha |�i 〉 = λi Ia |�i 〉, (26a)

where Sa = Ia is a unit operator in Xa
6 . Without loss of generality one can assume

Hückel Coulomb integral to equal zero, while the corresponding eigenvalues λi can
be expressed in units of the Hückel resonant integral. In this case those eigenvalues are

λ1 = −2, λ2 = λ3 = −1, λ4 = λ5 = 1, λ6 = 2, (26b)

The states |α〉(α = 1, . . . , 6) situated at respective atomic sites of the system A6
form an orthonormalized base {|α〉} in the space Xa

6 (see Fig. 2a):

〈α|β〉 = δαβ, α, β = 1, . . . , 6. (26c)

System A6 can be modified internally as well as externally. As an internal modifi-
cation consider replacement of the carbon atom C4 with a heteroatom X . Without loss
of generality one can assume that coupling parameter equals one, β = 1. Replace-
ment of the carbon atom C4 with a heteroatom can be approximated by the change
of the corresponding Coulomb integral from zero to αX �= 0. The interaction space
X int

1 is in this case one-dimensional and it is spanned by a single state |μ〉 ≡ |4〉
situated at the carbon atom 4. The projection operator on this interaction space is
Iint

1 = |μ〉〈μ| ≡ |4〉〈4|. The corresponding modification operators are

Va = αX |4〉〈4|, Pa = 0. (27)

As an external modification of the benzene molecule, consider attachment of the
ethylene structure to the carbon atom C1. In LRM and within the Hückel approxi-
mation, this structure represents a two-dimensional base system B2 with eigenvalues
E1 = −1 and E2 = 1:

Hb|r 〉 = Er Ib|r 〉, (28a)

where
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E1 = −1, E2 = 1, (28b)

and where Sb = Ib is a unit operator in the base space Xb
2 .

The states |r1〉 ≡ |7〉 and |r2〉 ≡ |8〉 situated at respective atomic sites of the system
B2 form an orthonormalized base {|r〉} in the space Xb

2 (see Fig. 2a):

〈ri |r j 〉 = δi j , ri , r j = 7, 8. (28c)

In this base Hamiltonian Hb and projection operator Ib can be expressed as

Hb = |7〉〈8| + |8〉〈7|, Ib = |7〉〈7| + |8〉〈8|, (29a)

In the base {|1〉, . . . , |8〉} of the combined space Xc
8 modification operators V and P

that describe external interaction between benzene (system A6) and ethylene (system
B2) can be expressed as

V = |1〉〈7| + |7〉〈1|, P = 0. (29b)

Modified system C8 that contains above external as well as above internal modifi-
cations is shown in Fig. 2b). This system is eight-dimensional, and the states situated
at respective atomic sites of this system form orthonormalized base {|1〉, . . . , |8〉} in
the space Xc

8.
Consider now LRM cardinal solutions of this system. Since Sb = Ib is a unit oper-

ator in Xb
2 while modification operators P and Pa are zero and since β = 1, LRM

expression (14a) reduces to

[
�b(εs)+ Hb − εsIb �ba(εs)

�ab(εs) �a(εs)− Va

] ∣∣∣∣
θs

ϕs

∣∣∣∣ = 0, (30a)

where

|θs〉 = 〈7|θs〉|7〉 + 〈8|θs〉|8〉 ∈ Xb
2, |ϕs〉 = 〈4|ϕs〉|4〉 ∈ X int

1 , (30b)

Each root εs /∈ {λi } of the determinant

h(ε) ≡
∣∣∣∣
�b(ε)+ Hb − εIb �ba(ε)

�ab(ε) �a(ε)− Va

∣∣∣∣ = 0. (30c)

is a cardinal eigenvalue of the modified system. According to (15a), the corresponding
eigenstate |�s〉 is a linear combination

|�s〉 =
6∑

i

〈�i |V|θs〉 + 〈�i |Va |ϕs〉
εs − λi

|�i 〉 + |θs〉. (31)

where |�s〉 ≡ |θs〉 + |ϕs〉 is an eigenstate of (30a) that corresponds to the eigenvalue
εs .
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Expressions (11–13), (27) and (29b) imply

�a(ε) = α2
X |4〉〈4|�44(ε), �b(ε) = |7〉〈7|�11(ε),

�ab(ε) = αX |4〉〈7|�41(ε),
(32a)

where

�αβ(ε) =
6∑

i(λi �=ε)

〈α|�i 〉〈�i |β〉
ε − λi

, α, β = 1, . . . , 6. (32b)

and where 〈α|�i 〉 are amplitudes of the benzene eigenstate |�i 〉 on the atomic sites α.
Using (32), (27) and (29a) expression (30a) can be written in the base {|7〉, |8〉, |4〉}
as

⎡

⎣
�11(εs)− εs 1 αX ·�14(εs)

1 −εs 0
αX ·�41(εs) 0 α2

X ·�44(εs)− αX

⎤

⎦

∣∣∣∣∣∣

〈7|θs〉
〈8|θs〉
〈4|ϕs〉

∣∣∣∣∣∣
= 0, (33a)

Each cardinal eigenvalue εs /∈
{
λ j

}
of the modified system is hence a root of a

determinant h(ε)

h(ε) ≡
∣∣∣∣∣∣

�11(ε)− ε 1 αX ·�14(ε)

1 −ε 0
αX ·�41(ε) 0 α2

X ·�44(ε)− αX

∣∣∣∣∣∣
= 0. (33b)

Expression (33a) involves only the states |7〉, |8〉 and |4〉 which span base space Xb
2

and interaction space X int
1 . No other state |α〉 (except of the state |α〉 = |4〉) contained

in the parent benzene system is explicitly present in this expression.
Once a particular cardinal eigenvalue εs /∈

{
λ j

}
is obtained as a root of (33b), the

corresponding eigenstate is given by the expression (31) where the states |θs〉 and |ϕs〉
are given by (30b) and where the amplitudes 〈7|θs〉, 〈8|θs〉 and 〈4|ϕs〉 are obtained as
a solution to (33a).

As a particular example consider the case αX = 0.5. If αX = 0.5 function h(ε)
given by the expression (33b) has six roots

ε1 = −2.0996751, ε2 = −1.3066889, ε3 = −0.5814234,
ε4 = 0.7335911, ε5 = 1.5525022, ε6 = 2.2016941.

(34)

Those roots are cardinal eigenvalues of the modified system. Once a particular
eigenvalue εs is known, the corresponding eigenstate |�s〉 is determined by the solu-
tion of (33a). For example, inserting cardinal eigenvalue ε1 = −2.0996751 into (33a)
and since αX = 0.5 one obtains

⎡

⎣
−0.0237358 1 −0.7179320

1 2.0996751 0
−0.7179320 0 −1.0308527

⎤

⎦

∣∣∣∣∣∣

〈7|θ1〉
〈8|θ1〉
〈4|ϕ1〉

∣∣∣∣∣∣
= 0, (35a)
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This equation has a nontrivial solution

〈7|θ1〉 = 0.7643029, 〈8|θ1〉 = −0.3640101, 〈4|ϕ1〉 = 0.5322948. (35b)

Inserting those values into (31) where εs ≡ ε1 and normalizing according to (24′),
one finds modified eigenstate |�1〉. In particular, in the base {|1〉, . . . , |8〉} one has

|�1〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5445634
−0.4039812
0.3036657

−0.2336182
0.3036657

−0.4039812
−0.3354440
0.1597599

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35c)

In a similar way, inserting cardinal eigenvalue ε2 = −1.3066889 into (33a) one finds

⎡

⎣
−0.2652931 1 −0.6165829

1 1.3066889 0
−0.6165829 0 −0.7603489

⎤

⎦

∣∣∣∣∣∣

〈7|θ2〉
〈8|θ2〉
〈4|ϕ2〉

∣∣∣∣∣∣
= 0, (36a)

This equation has a nontrivial solution

〈7|θ1〉 = −0.6676665, 〈8|θ1〉 = 0.5109606, 〈4|ϕ1〉 = 0.5414248. (36b)

Inserting into (31) and normalizing, one finds modified eigenstate |�2〉

|�2〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.2832862
−0.0765423
0.3833032

−0.4243157
0.3833032

−0.0765423
0.5232516

−0.4004408

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36c)

In this way one can derive all remaining cardinal solutions of the modified system.
Since there are six cardinal solutions, while the system C8 is 8-dimensional, this
system must have two singular solutions.

Consider now those singular solutions. According to the expressions (20), (27)
and (29b), each strongly sigular eigenstate with the eigenvalue εs = λ j is a linear
combination

|�s〉 =
η j∑

m

D(s)
m |� jm〉, (37a)
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where the coefficients D(s)
m satisfy

η j∑

m

〈1|� jm〉D(s)
m = 0,

η j∑

m

〈4|� jm〉D(s)
m = 0. (37b)

and where η j is degeneracy of the corresponding parent eigenvalue λ j . In particular,

if the eigenvalue λ j is non-degenerate, conditions (37b) reduce to 〈1|� j 〉D(s)
1 = 0

and 〈4|� j 〉D(s)
1 = 0. Since no non-degenerate eigenstate |� j 〉 has zero amplitude at

sites 1 and 4, non-degenerate eigenvalues λ1 = −2 and λ6 = 2 cannot be singular
eigenvalues of C8. Consider next doubly degenerate eigenvalues λ2 = λ3 = −1 and
λ4 = λ5 = 1 of A6. Expressions (37b) in conjuncture with expressions for the cor-
responding benzene eigenstates |� j 〉 imply that there is only one strongly singular
eigenstate |�7〉 with the eigenvalue ε7 = −1

|�7〉 = 1

2
(|2〉 − |3〉 + |5〉 − |6〉) , (38a)

and only one strongly singular eigenstate |�8〉 with the eigenvalue ε8 = 1

|�8〉 = 1

2
(|2〉 + |3〉 − |5〉 − |6〉) . (38b)

Both eigenstates of the modified system C8 are at the same time eigenstates of the
parent benzene system. This is trivially obvious. For example, eigenstate |�7〉 of C8
is a linear combination of the degenerate benzene eigenstates |�2〉 and |�3〉 with the
eigenvalue λ2 = λ3 = −1. This eigenstate is hence also benzene eigenstate with
the same eigenvalue. Further, according to the expression (38a), this eigenstate has
amplitude zero at atomic sites 1 and 4 which are subject to the modification of the
parent system. This eigenstate is hence not modified by the inclusion of external and
internal modifications, and hence it is also an eigenstate of the modified system with
the same eigenvalue. The same applies to the strongly singular eigenstate |�8〉. Since
the modified system is 8-dimensional, and since it contains six cardinal eigenstates and
two strongly singular eigenstates, this system contains no weakly singular eigenstate.

This completes LRM treatment of the modified system C8. One can verify this
LRM calculation with a standard diagonalization of this system. One finds that above
LRM calculation produces correct eigenvalues and eigenstates of this system.

From a numerical point of view, above example is not very interesting. It can be
solved more efficiently by many other methods. However, it illustrates main features
of the LRM approach, its advantageous and possible drawbacks.

4.2 Combined modification of the one-dimensional solid in the tight-binding
approximation

As another example, consider a simple combined modification of a finite one-dimen-
sional solid in the tight-binding approximation. In order to maintain translational
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Fig. 3 Modification of the finite one-dimensional solid in the tight-binding approximation. a Parent system
An is circular chain containing n atoms. b Modified system Cn+1. Internal modification is destruction of
the connection between the states |1〉 and |n〉 in the parent system. External modification is the interaction
of the state |1〉 with the external state |〉

invariance of such a solid, one has to supply appropriate boundary conditions. The
most convenient choice is the Born-von Karman periodic boundary condition [16].
In the case of linear chain containing n atoms, we simply join atom number 1 with
atom number n, thus forming a circular chain of n atoms (see Fig. 3a). For simplicity,
assume that each atomic site α contains only one orbital |α〉 (α = 1, . . . , n). Those
orbitals form a base in the corresponding n-dimensional space Xa

n . Assume further
that orbitals |α〉 situated at adjacent atomic sites are orthogonal to each other. In this
case those orbitals can be orthonormalized according to

〈α|β〉 = δαβ, α, β = 1, . . . , n. (39)

Since by assumption each atomic site contains only one atomic orbital, one can
without loss of generality assume that all matrix elements Ha

αβ of the Hamiltonian
Ha between adjacent atomic sites equal 1, while all remaining matrix elements equal
zero. Since atom number n is connected to the atom number 1, one can use a cyclic
convention

|n + 1〉 ≡ |1〉, |n〉 ≡ |0〉, (40a)

With this convention matrix elements Ha
αβ of the tight-binding Hamiltonian Ha can

be expressed in a compact form:

Ha
αβ ≡ 〈α|Ha |β〉 =

{
1 i f β = α + 1 or i f β = α − 1
0 otherwise

, α = 1, . . . , n. (40b)

Hamiltonian Ha hence equals

Ha =
n∑

α

[|α〉〈α + 1| + |α + 1〉〈α|]. (41a)

and it satisfies

Ha |� j 〉 = λ j Ia |� j 〉, (41b)
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where Ia is a unit operator in Xa
n . This Hamiltonian has eigenvalues λ j and eigenstates

|� j 〉

λ j = 2 · cos

(
2π j

n

)
, |� j 〉 = 1√

n

n∑

α

exp

(
i
2π jα

n

)
|α〉, (41c)

Let n be even. In this case one can choose index j in the above expressions to
assume n values

j = −n/2, . . . , n/2 − 1. (41d)

Since λ j = λ− j ( j = 1, . . . , n/2 − 1), corresponding eigenstates |� j 〉 and |�− j 〉
of the parent system An are degenerate. There are in addition two non-degenerate
eigenstates of this system

|�0〉 = 1√
n

n∑

α

|α〉, |�−n/2〉 = 1√
n

n∑

α

(−)α |α〉, (42a)

with eigenvalues

λ0 = 2, λ−n/2 = −2. (42b)

Above expressions describe parent system An . As an internal modification of this
system consider destruction of the interaction between atomic sites |1〉 and |n〉. This
modification of a parent system transforms circular chain containing n atoms into
linear chain containing n atoms. With the choice of the coupling parameter β = 1,
this modification is given by the operators

Va = − [|1〉〈n| + |n〉〈1|] , Pa = 0, (43a)

Since β = 1, modification operator Va transforms Hamiltonian Ha into the
Hamiltonian H′

a

H′
a = Ha + Va =

n−1∑

α

[|α〉〈α + 1| + |α + 1〉〈α|]. (43b)

Hamiltonian H′
a describes a linear chain containing n atoms. Modification opera-

tor Va thus destroys translational invariance of the parent system An and creates two
“surfaces” at atomic sites α = 1 and α = n. In the LRM approach interaction space
X int

2 that corresponds to the modification operator Va is two-dimensional, and it is
spanned by the base states |μ〉 ≡ |1〉 and |ν〉 ≡ |n〉. Denote linear chain described by
the Hamiltonian H′

a with A′
n .

Once the surface at the atomic site α = 1 (and also at the atomic site α = n) is
created by the modification operator Va , one can introduce interaction of thus created
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surface with some molecule Bρ . Such an interaction represents an external modifi-
cation of the parent system An . For simplicity, consider the interaction of the linear
chain A′

n with a single eigenstate |〉 of this molecule. Let this eigenstate correspond
to the eigenvalue E . Base system B1 is in this case one-dimensional and it is described
by the eigenvalue equation

Hb|〉 = EIb|〉, (44a)

where Ib is a unit operator in Xb
1 and where

Hb = E |〉〈|, 〈|〉 = 1. (44b)

In general, the state |〉 which is connected to the first state |1〉 of the linear chain
(system A′

n) can interact with several states of this chain. The strength of this interac-
tion should rapidly decrease as one penetrates inside the chain. Assume for simplicity
that the state |〉 interacts only with the first state |1〉 of this chain, and let the strength
of this interaction be γ . Modification operators V and P that describe such interaction
are

V = γ [|1〉〈| + |〉〈1|] , P = 0. (45)

Modified system Cn+1 that includes above internal as well as above external mod-
ification is (n + 1)-dimensional, and it is described by the eigenvalue equation

H|�s〉 = εsIc|�s〉, s = 1, . . . , n + 1, (46a)

where

H = Ha + Hb + Va + V. (46b)

and where Ic is a unit operator in the combined space Xc
n+1. Modified system Cn+1

is shown schematically in Fig. 3b.
Consider now LRM treatment of the above system. In the LRM formalism one has

to consider operator �(ε)

�(ε) =
∑

j (λ j �=ε)

|� j 〉〈� j |
ε − λ j

. (47)

where eigenvalues λ j and eigenstates |� j 〉 of the parent system An are given by
the expressions (41c). Next one has to construct operators �a(ε),�b(ε) and �ab(ε).
Using (41c), (43a) and (45) one finds
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�a(ε) ≡ Va�(ε)Va = 1

n

∑

j (λ j �=ε)

[
|1〉 + exp

(
i 2π j

n

)
|n〉

] [
〈1| + exp

(
−i 2π j

n

)
〈n|

]

ε − λ j
,

(48a)

�b(ε) ≡ V�(ε)V = γ 2

n

∑

j (λ j �=ε)

|〉〈|
ε − λ j

, (48b)

�ab(ε) ≡ Va�(ε)V = −γ
n

∑

j (λ j �=ε)

[
|1〉 + exp

(
i 2π j

n

)
|n〉

]
exp

(
−i 2π j

n

)
〈|

ε − λ j
. (48c)

Operators �a(ε),�b(ε) and �ab(ε) are key operators in the LRM treatment of the
modified system Cn+1. All matrix elements of those operators can be expressed in
terms of the functions f1(ε) and f2(ε)

f1(ε) = 1

n

∑

j (λ j �=ε)

1

ε − λ j
, f2(ε) = 1

n

∑

j (λ j �=ε)

exp
(

i 2π j
n

)

ε − λ j
, (49a)

The function f2(ε) is apparently complex. However, expressions (41c) imply

f2(ε) = 2

n

n/2−1∑

j=1

cos
(

2π j
n

)

ε − λ j
+ 1

n

(
1

ε − 2
− 1

ε + 2

)
, ε /∈ {λi } . (49b)

Both functions f1(ε) and f2(ε) are hence real.
In the base {|〉, |1〉, |n〉} all matrix elements of the operators (48) can be expressed

in terms of above two functions according to

〈1|�a(ε)|1〉 = 〈n|�a(ε)|n〉 = f1(ε), (50a)

〈1|�a(ε)|n〉 = 〈n|�a(ε)|1〉 = f2(ε), (50b)

〈|�b(ε)|〉 = γ 2 f1(ε), (50c)

〈1|�ab(ε)|〉 = 〈|�ba(ε)|1〉 = −γ f2(ε), (50d)

〈n|�ab(ε)|〉 = 〈|�ba(ε)|n〉 = −γ f1(ε). (50e)

All remaining matrix elements of those operators in the base {|1〉, . . . , |n〉, |〉} of
the combined space Xc

n+1 are zero. Using relations (50), (43a) and (44b), and since
β = 1 and P = Pa = 0, in the base {|〉, |1〉, |n〉} LRM expression (14a) reduces to

⎡

⎣
γ 2 f1(εs)+ E − εs −γ f2(εs) −γ f1(εs)

−γ f2(εs) f1(εs) f2(εs)+ 1
−γ f1(εs) f2(εs)+ 1 f1(εs)

⎤

⎦

∣∣∣∣∣∣

〈|θs〉
〈1|ϕs〉
〈n|ϕs〉

∣∣∣∣∣∣
= 0, (51a)
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where

|θs〉 = 〈|θs〉|〉 ∈ Xb
1, |ϕs〉 = 〈1|ϕs〉|1〉 + 〈n|ϕs〉|n〉 ∈ X int

2 , (51b)

Each cardinal eigenvalue εs /∈
{
λ j

}
of the modified system Cn+1 is hence a root

of the determinant

h(ε) ≡
∣∣∣∣∣∣

γ 2 f1(ε)+ E − ε −γ f2(ε) −γ f1(ε)

−γ f2(ε) f1(ε) f2(ε)+ 1
−γ f1(ε) f2(ε)+ 1 f1(ε)

∣∣∣∣∣∣
= 0, (51c)

According to (15a), once εs /∈
{
λ j

}
is obtained as a root of (51c), the corresponding

cardinal eigenstate |�s〉 is a linear combination

|�s〉 =
n∑

i

〈�i |V|θs〉 + 〈�i |Va |ϕs〉
εs − λi

|�i 〉 + |θs〉. (51d)

where the states |θs〉 and |ϕs〉 are given by (51b) and where the corresponding ampli-
tudes 〈|θs〉, 〈1|ϕs〉 and 〈n|ϕs〉 are obtained as a solution to (51a). All cardinal eigen-
values and eigenstates of the modified system are thus obtained as a solution to the
3×3 matrix eigenvalue Eq. (51a), however large the dimension n of the parent system
An .

Consider now singular solutions of the modified system Cn+1. According to the
expressions (20), each strongly singular eigenstate |�s〉 with the eigenvalue εs =
λ j ∈ {λi } is a linear combination (20a) where the coefficients D(s)

m satisfy (20b).
Since P = Pa = 0, since β �= 0, and since all eigenvalues λi of the base system are
double degenerate except for the eigenvalues λ0 and λ−n/2 which are non-degenerate,
expressions (20b) reduce to

〈1|Va |� j 〉D(s)
j + 〈1|Va |�− j 〉D(s)

− j = 0, 〈n|Va |� j 〉D(s)
j + 〈n|Va |�− j 〉D(s)

− j = 0,

〈|V|� j 〉D(s)
j + 〈|V|�− j 〉D(s)

− j = 0, j = 1, . . . , n/2 − 1. (52a)

〈|V|�0〉D(s)
0 = 0, 〈1|Va |�0〉D(s)

0 = 0, 〈n|Va |�0〉D(s)
0 = 0

〈|V|�−n/2〉D(s)
−n/2 = 0, 〈1|Va |�−n/2〉D(s)

−n/2 = 0, 〈n|Va |�−n/2〉D(s)
−n/2 = 0.

(52b)

According to (42a), eigenstates |�0〉 and |�−n/2〉 of An have nonzero amplitudes at

the states |1〉 and |n〉. Hence and due to (43a) expressions (52b) imply D(s)
0 = D(s)

−n/2 =
0. There are hence no strongly singular eigenstates with the eigenvalues εs = λ0 = 2
and εs = λ−n/2 = −2. Consider now expressions (52a). Using (41c), (43a) and (45)

one finds that those expressions imply D(s)
j = D(s)

− j = 0 ( j = 1, . . . , n/2−1).
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There are hence no strongly singular eigenstates with the eigenvalues εs = λ j

( j = ±1, . . . ,±n/2 − 1). In conclusion, modified system contains no strongly sin-
gular solutions. Further, since the introduction of internal and external modifications
reduces the symmetry of the parent system An , there are also no weakly singular
solutions. Expressions (51) hence produce all solutions of the modified system. There
are (n + 1) such solutions, and all those solutions are cardinal. This completes LRM
treatment of the modified system Cn+1.

Consider now some special cases of this system. All cardinal solutions of the modi-
fied system Cn+1 depend on the interaction γ between the finite chain A′

n and the state
|〉. In particular, if there is no interaction between this chain and the state |〉, one
has γ = 0. In this case modified system Cn+1 reduces to two non-interacting subsys-
tems, system B1 that contains a single state |〉 with the eigenvalue E , and system A′

n
that represents a finite chain in the tight-binding approximation. Since γ = 0 LRM
expression (51c) reduces to

h(ε) ≡
∣∣∣∣∣∣

E − ε 0 0
0 f1(ε) f2(ε)+ 1
0 f2(ε)+ 1 f1(ε)

∣∣∣∣∣∣
= 0, (53a)

This factorizes into two expressions, expression ε = E which reproduces eigen-
value E of the base system B1, and reduced determinant

h′(ε) ≡
∣∣∣∣

f1(ε) f2(ε)+ 1
f2(ε)+ 1 f1(ε)

∣∣∣∣ ≡ f 2
1 (ε)− [ f2(ε)+ 1]2 = 0, (53b)

This latter expression can be simplified to

f2(ε)+ 1 = ± f1(ε). (53c)

Roots of (53c) produce all cardinal eigenvalues of the finite one-dimensional chain
A′

n . There are exact expressions for eigenvalues and eigenstates of such a finite-dimen-
sional chain containing n atoms [5]:

εs = 2 cos

(
sπ

n + 1

)
, (54a)

|�s〉 =
√

2

n + 1

n∑

α

sin

(
π

n + 1
αs

)
|α〉, s = 1, . . . , n. (54b)

One can verify that eigenvalues (54a) really satisfy LRM expression (53c). This shows
that in the case γ = 0 LRM expressions produces correct eigenvalues of the modified
system. One similarly finds that the corresponding eigenstates (54b) are also correctly
reproduced by the LRM expression (51d).

Consider now the case γ �= 0 which introduces a nontrivial interaction of the
parent system An with a base system B1. As a particular example consider the case
n = 100, γ = 0.5 and E = 2.1. Since n is relatively large, eigenvalues λi of the parent
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system A100 (expression 41c) are relatively dense inside the interval D = [−2, 2].
In the limit n → ∞ this interval becomes an eigenvalue band of the parent sys-
tem. Eigenvalue E = 2.1 of the base system B1 is outside this eigenvalue band, and
this system interacts with a parent system with the strength γ = 0.5. Eigenvalues
εs(s = 1, . . . , 101) of the modified system Cn+1 are roots of the LRM expression
(51c) where γ = 0.5. First few and last few roots εs of this expression arranged in the
decreasing order are:

ε1 = 2.2520943, ε2 = 1.9990188, ε3 = 1.9960765, ε4 = 1.9911775,
ε5 = 1.9843285, ε6 = 1.9755391, ε7 = 1.9648208, ε8 = 1.9521876,
. . . ε99 = −1.9913099, ε100 = −1.9961362, ε101 = −1.9990338.

(55)

All roots ε = εs(s = 2, . . . , 101) of the LRM expression (51c) are contained inside
the interval D = [−2, 2]. The only exception is the root ε1 = 2.2520943 which is
contained outside this interval.

Consider eigenstate |�1〉 that corresponds to the eigenvalue ε1 /∈ D. Inserting LRM
eigenvalue ε1 into (51a) where γ = 0.5, E = 2.1 and n = 100 one finds

⎡

⎣
0.0893723 −0.2938055 −0.4829332

−0.2938055 0.9658664 1.5876111
−0.4829332 1.5876111 0.9658664

⎤

⎦

∣∣∣∣∣∣

〈|θ1〉
〈1|ϕ1〉

〈100|ϕ1〉

∣∣∣∣∣∣
= 0, (56a)

This equation has a nontrivial solution

〈|θ1〉 = 0.9567163, 〈1|ϕ1〉 = 0.2910222, 〈100|ϕ1〉 = 0, (56b)

Note that amplitude 〈100|ϕ1〉 = 0 is zero. According to (15b) and since the inter-
action space X int

2 is spanned by the states |1〉 and |100〉, this amplitude is the pro-
jection 〈100|�1〉 of the modified eigenstate |�1〉 (expression 51d) on the state |100〉.
Since eigenvalue ε1 /∈ [−2, 2] of |�1〉 is outside the range [−2, 2], eigenstate |�1〉 is
essentially eigenstate |〉 of the base system B1 perturbed by the interaction with the
one-dimensional chain A′

100. Eigenstate |�1〉 is hence localized on the state |〉 and
on those states | j〉 of this chain that are close to the state |1〉 where the system A′

100
connects to the state |〉. Projection 〈100|�1〉 of the modified eigenstate |�1〉 on the
state |100〉 situated at the end of the chain A′

100 is hence negligible.
Inserting eigenvalue ε1 = 2.2520943 and amplitudes (56b) into the expression

(51d) and normalizing according to (24′), one finds (see Fig. 4)

〈|�1〉 = 0.9337631, 〈1|�1〉 = 0.2840401, 〈2|�1〉 = 0.1728035,
〈3|�1〉 = 0.1051297, 〈4|�1〉 = 0.0639585, 〈5|�1〉 = 0.0389109 . . .
〈10|�1〉 = 0.0032429 . . . 〈20|�1〉 = 0.0000225 . . . 〈30|�1〉 = 0.0000002 . . .

(56c)

where |�1〉 is normalized. Eigenstate |�1〉 is mainly localized at the state |〉 and on
few sites | j〉 close to the beginning of the chain A′

100. Probability to find this eigenstate
at the state |〉 equals 〈|�1〉2 = 0.8719135. If one include probabilities to find this
eigenstate at first five states |α〉(α = 1, . . . , 5) of the one-dimensional chain A′

100, one
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Fig. 4 Modified system shown in Fig. 3b with parameters n = 100, E = 2.1 and γ = 0.5 is considered.
Shown are amplitudes 〈|�1〉 and 〈i |�1〉 (i = 1, . . . , 100) of the modified eigenstate |�1〉 that has eigen-
value ε1 = 2.2520943. This eigenvalue is outside the range D = [−2, 2]. It is hence localized at the state
|〉 and at few states |i〉 close to the state |i〉 = |1〉

finds 〈|�1〉2 + ∑5
1 〈α|�1〉2 = 0.9991103. Eigenstate |�1〉 is hence essentially base

state |〉 modified by the interaction of the base system B1 with the parent system
A100. Due to this interaction, initial eigenvalue E = 2.1 shifts to ε1 = 2.2520943.

With the exception of the modified eigenstate |�1〉, all other modified eigenstates
|�s〉 of C101 extend over the entire chain A′

100. Consider for example root ε2 =
1.9990188 of the expression (51c). This root is an eigenvalue of the modified sys-
tem that is contained inside the range D = [−2, 2]. Inserting LRM eigenvalue ε2 =
1.9990188 into (51a) where γ = 0.5, E = 2.1 and n = 100 one finds

⎡

⎣
0.0829971 −0.2859506 −0.0359682

−0.2859506 −0.0719365 0.4280988
−0.0359682 0.4280988 −0.0719365

⎤

⎦

∣∣∣∣∣∣

〈|θ2〉
〈1|ϕ2〉

〈100|ϕ2〉

∣∣∣∣∣∣
= 0, (57a)

This equation has a nontrivial solution

〈|θ2〉 = 0.8075445, 〈1|ϕ2〉 = −0.1630937, 〈100|ϕ2〉 = −0.5668089,

(57b)

Unlike in the previous case, the amplitude 〈100|ϕ2〉 now differs from zero. This
amplitude equals projection 〈100|�2〉 of the modified eigenstate |�2〉 as given by the
expression (51d) on the state |100〉. Unlike modified eigenstate |�1〉, modified eigen-
state |�2〉 extends over the entire chain A′

100 and it has a non-vanishing amplitude at
the end of this chain.

Inserting eigenvalue ε2 = 1.9990188 and amplitudes (57b) into (51d) and normal-
izing according to (24′), one finds (see Fig. 5)

〈|�2〉= − 0.0063015, 〈1|�2〉= 0.0012727, 〈2|�2〉= 0.0056948,
〈3|�2〉= 0.0101114, 〈4|�2〉= 0.0145181, 〈5|�2〉= 0.0189105 . . .
〈10|�2〉= 0.0405087 . . . 〈20|�2〉= 0.0802254 . . . 〈30|�2〉= 0.1121337 . . .
〈98|�2〉= 0.0132513, 〈99|�2〉= 0.0088416, 〈100|�2〉= 0.0044230.

(57c)
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Fig. 5 The same as Fig. 4, but this time are shown amplitudes 〈|�2〉 and 〈i |�2〉 (i = 1, . . . , 100) of
the modified eigenstate |�2〉 that has eigenvalue ε2 = 1.9990188. This eigenvalue is inside the range
D = [−2, 2]. Eigenstate |�2〉 is hence an embedded eigenstate and it extends over the entire one-dimen-
sional chain A′

100

The state |�2〉 has non-vanishing amplitudes over the entire chain A′
100 and one

has in particular 〈100|�2〉 �= 0.
In a similar way can be obtained all other LRM solutions of the combined system

C101. With the exception of the eigenstate |�1〉, each other eigenstate |�s〉 of the modi-
fied system has non-vanishing components 〈α|�s〉 for almost eachα(α = 1, . . . , 100).
One can verify this LRM calculation with a standard diagonalization of this system.
One thus finds that above LRM calculation produces correct eigenvalues and eigen-
states of the modified system.

4.3 Comment on the example 4.2

Example 4.2 is given in order to illustrate possible application of the LRM approach
to some problems in the solid state physics. This example is necessarily simple and
hence not particularly useful. In the more realistic tight-binding approach, instead of a
single atom α and a single atomic orbital |α〉 situated at this atom, one should consider
a unit cell that may contain several atoms and several atomic orbitals situated at each
of those atoms [16]. This generalization presents no problem for the LRM approach.
For example, if with each unit cell are associated ξ atomic orbitals and if the parent
system contains n unit cells, this system is nξ -dimensional, i.e. parent system is sys-
tem Anξ . If in accord with tight-binding approximation one assumes that only those
orbitals that are situated at adjacent unit cells can interact with each other, one has 2ξ
atomic orbitals that participate in the interaction between adjacent unit cells (1) and
(n). In this case, in order to transform a circular chain into a linear chain, destruction of
the interaction between those two unit cells involves σ = 2ξ dimensional interaction
space X int

2ξ . The construction of the corresponding modification operator V that acts in

the space X int
2ξ is rather straightforward. Further, one can assume that the parent system

Anξ interacts with a base system Bρ that contains not only one but rather ρ > 1 atomic
orbitals. In this case base space Xb

ρ is ρ-dimensional. As a result, instead of the 3 × 3
matrix Eq. (51a) and a 3×3 determinant (51c), one has to consider (2ξ + ρ)×(2ξ + ρ)

matrix equation and (2ξ + ρ)× (2ξ + ρ) corresponding determinant.
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In a similar way can be treated more general cases when atomic orbitals situated at
adjacent unit cells are not orthogonal to each other. The only new feature in this case
is that modification operators Pa and P are no more zero. Otherwise LRM treatment
of cardinal solutions of the modified system again results in the (2ξ + ρ)× (2ξ + ρ)

matrix equation. Similar conclusions apply to singular solutions of the modified sys-
tem.

Above approach can be also generalized to the LRM treatment of three-dimensional
solids. In order to maintain translational invariance of a parent system one can again
use Born-van Karman periodic boundary condition. In a similar way as above this solid
can be modified internally in order to create a surface of such a solid, and externally
in order to establish interaction of thus created surface with some molecule (or some
other quantum system). However, efficient transition to the three-dimensional case
requires generalization of the LRM approach to the treatment of infinite-dimensional
parent systems [3].

The main point of the above approach is that due to the translational invariance one
can obtain relatively reliable solution of the parent system An , though this system may
be very large. Once this is done, LRM formalism does the rest.

5 Conclusion

In this paper LRM appropach is generalized to the simultaneous presence of intenal
and external modifications of the parent finite-dimensional system An . This system
is modified externally by the interaction with a ρ-dimensional base system Bρ and
internally with a modification involving σ -dimensional interaction space X int

σ . Most
important feature of this approach is that the LRM expressions that produce cardinal
(εs /∈ {λi }) eigenvalues and eigenstates of the modified (n + ρ)-dimensional system
Cn+ρ is (σ + ρ) × (σ + ρ) matrix equation. In particular, dimension of this LRM
equation does not depend on the dimension n of the parent system. The same applies to
the LRM expressions that produce singular (εs = λ j ∈ {λi }) eigenvalues and eigen-
states of the modified system. LRM approach is hence particularly suitable to those
cases when the dimension of the parent system is large with respect to the dimension
σ of the interaction space and with respect to the dimension ρ of the base system.

Key point in the LRM treatment of such systems is that in many cases of interest
one has relatively reliable solution of the parent system An , though this system may
be very large. For example if An represents an ideal translationally invariant solid,
due to this translational invariance one can obtain relatively reliable solution of such
a solid, however large n. Once eigenvalues and eigenstates of An are known, LRM
provides a straightforward formalism to derive solutions to various modified systems
Cn+ρ . Modifications of the parent system An can include creation of surfaces, estab-
lishment of the interaction with various molecules with thus created surfaces, creation
of impurities and defects in the parent system An , etc. All such modifications of a
parent system destroy original translational invariance and it is hence usually rather
difficult to obtain an exact solution of such modified systems by other standard meth-
ods. However LRM provides an exact solution to all such systems. As long as rank of
the corresponding modification operators is small with respect to the dimension n of
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the original parent system, this approach is numerically very efficient. In addition, it
is possible to obtain n → ∞ limit of the corresponding LRM expressions [3,8,9]. In
this way LRM can provide exact solution of the external and internal modifications of
infinite-dimensional systems. This extension of LRM to infinite dimensional systems
was successfully obtained in the case of external modifications of infinite-dimensional
parent systems [3]. It remains to generalize thus obtained results to the simultaneous
presence of internal and external modifications of such infinite-dimensional systems.

Appendix A

LRM treatment of finite-dimensional systems is generalized to modified systems that
contain both, external as well as internal modifications of the original parent system.

A1. Parent system An

Consider the system An described by the generalized eigenvalue Eq. (1a). Operators
Ha and Sa are Hermitean in the n-dimensional space Xa

n spanned by eigenstates |�i 〉
of (1a). Operator Sa is in addition positive definite in this space. Since Sa is Hermite-
an and positive definite, operators S1/2

a and S−1/2
a are well defined. In addition, those

operators are also Hermitean and positive definite in Xa
n . Hence eigenvalue Eq. (1a)

can be transformed into a standard eigenvalue equation

H′
a |�′

i 〉 = λi |�′
i 〉, i = 1, . . . , n, (A1a)

where

H′
a = S−1/2

a HaS−1/2
a , |�′

i 〉 = S1/2
a |�i 〉. (A1b)

Hermiticity of Ha and S−1/2
a implies Hermiticity of H′

a . Eigenvalues λi of (1a) are
hence real. Further, since eigenstates |�′

i 〉 of H′
a can be orthonormalized in a standard

way 〈�′
i |�′

j 〉 = δi j , eigenstates |�i 〉 of (1a) can be orthonormalized according to
(1b). In a similar way one finds that eigenstates |�s〉 of the eigenvalue Eq. (7a) that
describes modified system can be orthonormalized according to (7c).

Consider the operator Ia

Ia =
n∑

j

|� j 〉〈� j |Sa, (A2a)

Expression (1b) implies Ia |�i 〉 = |�i 〉 for each eigenstate |�i 〉 of (1a). Since those
eigenstates form a complete set in Xa

n , operator Ia is a unit operator in this space. Oper-
ator Ia as given by the expression (A2a) is not manifestly Hermitean. However, since
it is a unit operator in Xa

n , it must be Hermitean. Taking Hermitean conjugate of the
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expression (A2a) one finds

Ia =
n∑

j

Sa |� j 〉〈� j |. (A2b)

This is another possible representation of the unit operator Ia .
Expressions (A2) imply

S−1
a =

n∑

j

|� j 〉〈� j |, (A3a)

where S−1
a is inverse of Sa in the space Xa

n . In a similar way using expression (1b)
one finds that the operator Ha can be written as

Ha =
n∑

j

λ j Sa |� j 〉〈� j |Sa . (A3b)

By definition, system An described by the eigenvalue Eq. (1a) is a parent system.

A2. Modifications of a parent system

Parent system An can be modified internally as well as externally.
In an external modification, system An interacts with ρ-dimensional system Bρ

which is outside the system An . System Bρ is described by the generalized eigenvalue
Eq. (4a). Operators Hb and Sb are Hermitean in the ρ-dimensional space Xb

ρ spanned
by eigenstates |r 〉 of (4a). Operator Sb is in addition positive definite in this space.
In analogy to (1b), eigenstates |r 〉 of Bρ can be orthonormalized according to (4b)
while a unit operator Ib in the space Xb

ρ can be written in the form

Ib =
ρ∑

r

|r 〉〈r |Sb =
ρ∑

r

Sb|r 〉〈r |. (A4)

By definition, system Bρ described by the eigenvalue Eq. (4a) is a base system.
Interaction between the parent system An and the base system Bρ is described by

modification operators V and P. Those operators are Hermitean, they connect vectors
in the parent space Xa

n with vectors in the base space Xb
ρ , and they vanish over spaces

Xa
n and Xb

ρ . Hence those operators satisfy

V = IbVIa + IaVIb, P = IbPIa + IaPIb, (A5a)

Operator V modifies operators Ha and Hb, while operator P modifies operators Sa and
Sb. From the point of view of the parent system An , base system Bρ in conjuncture
with the operators V and P represents an external modification.
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In addition to the external modification, parent system An can be modified inter-
nally. Internal modification involves Hermitean operators Va and Pa that act in the
space Xa

n . Operator Va modifies operator Ha , while operator Pa modifies operator Sa .
Those operators are nonzero over a σ -dimensional space X int

σ , subspace of the space
Xa

n . By definition, X int
σ is the interaction space. This space is a combined image of

operators Va and Pa . In other words, X int
σ is spanned by all vectors of a type Va |�〉

and by all vectors of a type Pa |�〉, where |�〉 ∈ Xa
n .

Let Iint be projection operator on the interaction space X int
σ . Since Va and Pa are

nonzero only over X int
σ , those operators satisfy

Va = IintVaIint, Pa = IintPaIint. (A5b)

Modified system Cn+ρ that contains both, internal and external modifications of
the parent system An , is described by the generalized eigenvalue Eq. (7a) where β is
the coupling parameter. This parameter is introduced for convenience, in order to have
a clear distinction between the weak modifications (small β) and strong modifications
(large β). Since all operators in the expressions (7b) are Hermitean, operators Hc

and Sc are also Hermitean. In addition, operator Sc is required to be positive definite
in the (n + ρ)-dimensional combined space Xc

n+ρ spanned by the eigenstates |�s〉
of the modified system Cn+ρ . Since Sc is Hermitean and positive definite in Xc

n+ρ ,
eigenstates |�s〉 of Cn+ρ can be orthonormalized according to (7c).

Modified system Cn+ρ that contains both, external as well as internal modifications
is shown schematically in Fig. 1.

In LRM are treated in a different way cardinal and singular eigenvalues εs and
corresponding eigenstates |�s〉 of the modified system Cn+ρ [1–3]. By definition,
eigenvalue εs of Cn+ρ is cardinal if it differs from all eigenvalues λi of the parent
system An (εs /∈ {λi }), otherwise it is singular (εs = λ j ∈ {λi }). If εs is cardinal
(singular), the corresponding eigenstate |�s〉 (or eigenstates if εs is degenerate) is
cardinal (singular).

A3. Proof of Theorems 1 and 2

Consider eigenvalue Eq. (1a). Since Ha and Sa are Hermitean, this equation implies

〈�i |Ha = λi 〈�i |Sa, i = 1, . . . , n. (A6)

and similarly for eigenvalue Eqs. (4a) and (7a). Multiplying (7a) from left by 〈�i |,
using 〈�i |Hb = 〈�i |Sb = 0 and expressions (A5) and (A6), one finds

(εs − λi ) 〈�i |Sa |�a
s 〉 = β〈�i |V − εsP|θs〉

+β〈�i |Va − εsPa |ϕs〉, i = 1, . . . , n, s = 1, . . . , n + ρ.

(A7a)
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where

|�a
s 〉 = Ia |�s〉 ∈ Xa

n , |θs〉 = Ib|�s〉 ∈ Xb
ρ, |ϕs〉 = Iint|�s〉 ∈ X int

σ ,

(A7b)

are projections of the modified eigenstate |�s〉 on spaces Xa
n , Xb

ρ and X int
σ , respectively.

In particular, modified eigenstate |�s〉 is a linear combination

|�s〉 = |�a
s 〉 + |θs〉. (A7c)

Since |�s〉 �= 0 one must have either |�a
s 〉 �= 0 and/or |θs〉 �= 0.

In a similar way, multiplying (7a) from left by 〈r | and using (A7b) and 〈r |Ha =
〈r |Sa = 〈r |Va = 〈r |Pa = 0 one finds

〈r |εsSb − Hb|θs〉 = β〈r |V − εsP|�a
s 〉, r = 1, . . . , ρ, s = 1, . . . , n + ρ,

(A8a)

Since (εsSb − Hb) |θs〉 ∈ Xb
ρ and (V − εsP) |�a

s 〉 ∈ Xb
ρ , and since the states

|r 〉(r = 1, . . . , ρ) form a complete set in Xb
ρ , this implies

(εsSb − Hb) |θs〉 = β (V − εsP) |�a
s 〉, s = 1, . . . , n + ρ. (A8b)

Expressions (A7) and (A8) are starting expressions for the LRM treatment of mod-
ified systems.

Cardinal solutions (Theorem 1)

Let εs /∈ {λi } be a cardinal eigenvalue of the generalized eigenvalue Eq. (7a). Divide
(A7a) by (εs − λi ), multiply from left by |�i 〉, sum over i and use (A2a) to obtain

|�a
s 〉 = β

n∑

i

〈�i |V − εsP|θs〉 + 〈�i |Va − εsPa |ϕs〉
εs − λi

|�i 〉. (A9)

Multiply (A9) from left by (V − εsP) to obtain

(V − εsP) |�a
s 〉 = β�b(εs)|θs〉 + β�ba(εs)|ϕs〉. (A10)

where operators �b(ε) and �ab(ε) ≡ (�ba(ε))
∗ are given by expressions (11) and

(13), respectively. Assume now β �= 0. In this case using expression (A8b) one can
eliminate component |�a

s 〉 from the expression (A10) to obtain:

[
β2�b(εs)+ Hb − εsSb

]
|θs〉 + β2�ba(εs)|ϕs〉 = 0, (A11a)
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Multiplying (A9) from left by (Va − εsPa) and using (A7b) one finds

[β�a(εs)+ εsPa − Va] |ϕs〉 + β�ab(εs)|θs〉 = 0. (A11b)

where �a(ε) is given by the expression (12). Since according to (A7c) and (A9)
|�s〉 �= 0 implies |θs〉 �= 0 and/or |ϕs〉 �= 0, expressions (A11) must have a nontrivial
solution |�s〉 ≡ |θs〉 + |ϕs〉 �= 0.

If β �= 0 expressions (A11) can be written in the manifestly Hermitean form (14a).
However if β = 0 expression (A11a) reduces to the expression (4a) which describes
isolated system Bρ , while expression (A11b) reduces to [εsPa − Va] |ϕs〉 = 0. How-
ever, as implied by the expressions (A7b) and (A9), if β = 0 one has |�a

s 〉 = |ϕs〉 = 0.
In conclusion, if β = 0 expressions (A11) reduce to the expression (4a) that describes
isolated system Bρ and in addition the corresponding cardinal eigenstate |�s〉 has no
Xa

n -component. This eigenstate is hence an eigenstate of the isolated base system Bρ .
This conclusion is trivially obvious, since in the case β = 0 there is no interaction
between the systems An and Bρ , and each eigenstate |r 〉 of the isolated system Bρ
that has eigenvalue Er /∈ {λi } is by definition cardinal eigenstate of the combined
system Cn+ρ that consists of non-interactions subsystems An and Bρ .

Let {|μ〉} be the base in X int
σ orthonormalized according to (2a), let {|r〉} be the

base in Xb
ρ orthonormalized according to (5a), and let β �= 0. Projection operators

Iint and Ib can be expressed in terms of the base vectors |μ〉 and |r〉 according to (2c)
and (5b), respectively. In the base {|r〉, |μ〉} (r = 1, . . . ρ;μ = 1, . . . σ ) expressions
(A11) can be written in the explicit form

ρ∑

t

〈r |β2�b(εs)+ Hb − εsSb|t〉B(s)t

+β2
σ∑

ν

〈r |�ba(εs)|ν〉C (s)
ν = 0. r = 1, . . . , ρ, (A12a)

β

ρ∑

t

〈μ|�ab(εs)|t〉B(s)t

+
σ∑

ν

〈μ|β�a(εs)+ εsPa − Va |ν〉C (s)
ν = 0 μ = 1, . . . , σ. (A12b)

where

σ∑

ν

C (s)
ν |ν〉 = |ϕs〉 ∈ X int

σ ,

ρ∑

t

B(s)t |t〉 = |θs〉 ∈ Xb
ρ. (A12c)

Expressions (A12a) and (A12b) form a set of ρ + σ homogenous linear equations
in ρ + σ unknowns, ρ unknown coefficients B(s)t that determine the state |θs〉 and σ
unknown coefficients C (s)

ν that determine the state |ϕs〉. Those equations have a non-
trivial solution if and only if the determinant of this system vanishes. Each cardinal
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eigenvalue ε = εs /∈ {λi } of the generalized eigenvalue Eq. (7a) is hence a root of the
(ρ + σ)× (ρ + σ) determinant (14c).

One finds that the inverse is also true, each root ε = εs /∈ {λi } of (14c) is an
eigenvalue of the generalized eigenvalue Eq. (7a). According to (A8c) and (A9), once
ε = εs /∈ {λi } is obtained as a root of (14c), the corresponding eigenstate |�s〉 is given
by the expression (15a) where |θs〉 and |ϕs〉 are obtained as a solution of (14a). This
proves Theorem 1.

Proof of Lemma 1 Let |�sk〉 ≡ |θsk〉 + |ϕsk〉 (k = 1, . . . , κ) be the set of κ linearly
dependent eigenstates of (14a) that correspond to the same eigenvalue ε = εs /∈ {λi }
of the modified system. Since those states are linearly dependent, there are coefficients
ck(k = 1, . . . , κ) which are not all zero such that

κ∑

k

ck |�sk〉 ≡
κ∑

k

ck (|θsk〉 + |ϕsk〉) = 0, (A13a)

Using this expression one finds that the corresponding eigenstates |�sk〉 (k =
1, . . . , κ) of the modified system Cn+ρ as given by (15a) satisfy

κ∑

k

ck |�sk〉 = 0. (A13b)

Linear dependence of the eigenstates |�sk〉 (k = 1, . . . κ) of (14a) hence implies
linear dependence of the corresponding eigenstates |�sk〉 of the modified system Cn+ρ .
The inverse is also true. Let namely eigenstates |�sk〉 (k = 1, . . . , κ) of the modified
system Cn+ρ correspond to the same eigenvalue εs and let those eigenstates be linearly
dependent. In this case there are coefficients ck (k = 1, . . . , κ) which are not all zero
and which satisfy (A13b). Multiplying this expression from left by Ib as well as by
Iint and using (A7b) one derives (A13a). Linear dependence of modified eigenstates
|�sk〉 hence implies linear dependence of the corresponding eigenstates |�sk〉 of the
eigenvalue Eq. (14a). This proves Lemma 1. ��

Since (14a) is a (ρ + σ) × (ρ + σ) matrix equation, Lemma 1 implies that each
cardinal eigenvalue ε = εs /∈ {λi } of the modified system can be at most (ρ + σ)

degenerate.

Normalization of cardinal eigenstates

Cardinal eigenstate (15a) of the modified system Cn+ρ can be normalized according
to

|�s〉 → |� ′
s〉 = 1√

Ns
|�s〉, (A14a)

where normalization constant Ns is given by

Ns = 〈�s |Sc|�s〉. (A14b)
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Expression (7b) implies that normalization constant Ns can be given in the form
(23a). Matrix elements 〈θs |Sb|θs〉 and 〈ϕs |Pa |ϕs〉 in (23a) involve only the states
|θs〉 and |ϕs〉 which are obtained as a solution to LRM Eq. (14a). Matrix elements
〈�a

s |Sa |�a
s 〉 and 〈�a

s |P|θs〉 = 〈θs |P|�a
s 〉∗ in this expression can be expressed in

terms of those two states and in terms of the known eigenstates |�i 〉 and correspond-
ing eigenvalues λi of the parent system An . Using definition (10) of the operator�(ε)
one derives expressions (23) and (24).

Singular solutions (Theorem 2)

Let εs = λ j ∈ {λi } be a singular eigenvalue of the modified system Cn+ρ . Let further
λ j be η j -degenerate and let |� jm〉(m = 1, . . . , η j ) be the corresponding eigenstates
of the parent system An orthonormalized according to (1b). Those eigenstates span
η j -dimensional space X j

η j , subspace of the space Xa
n .

Divide (A7a) by
(
λ j − λi

)
where λi �= λ j = εs , multiply from left by |�i 〉, sum

over i(λi �= εs), add to both sides �m |� jm〉〈� jm |Sa |�s〉 and use (A2a) to obtain

|�a
s 〉 = β

∑

i(λi �=λ j )

〈�i |V − λ j P|θs〉 + 〈�i |Va − λ j Pa |ϕs〉
λ j − λi

|�i 〉 + |χ j
s 〉. (A15a)

where the states |�a
s 〉, |θs〉 and |ϕs〉 satisfy (A7b) and where

|χ j
s 〉 =

η j∑

m

|� jm〉〈� jm |Sa |�s〉 ≡
η j∑

m

D(s)
m |� jm〉 ∈ X j

η j
. (A15b)

One can write the state |χ j
s 〉 as

|χ j
s 〉 = O j |�s〉, (A16a)

where operator O j is given by

O j =
η j∑

m

|� jm〉〈� jm |Sa . (A16b)

Multiply (A15a) from left by
(
V − λ j P

)
and use expressions (11) and (13) to obtain

(
V − λ j P

) |�a
s 〉 = β�b(λ j )|θs〉 + β�ba(λ j )|ϕs〉 + (

V − λ j P
) |χ j

s 〉, (A17)

Assume now β �= 0. In this case using expression (A8b) one can eliminate compo-
nent |�a

s 〉 from (A17). One thus finds

[
β2�b(λ j )+ Hb − λ j Sb

]
|θs〉 + β2�ba(λ j )|ϕs〉 + β

(
V − λ j P

) |χ j
s 〉 = 0,

(A18a)
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Multiply (A15a) from left by
(
Va − λ j Pa

)
and use (A5b) and (A7b) to obtain

[
β�a(λ j )+ λ j Pa − Va

] |ϕs〉 + β�ab(λ j )|θs〉 + (
Va − λ j Pa

) |χ j
s 〉 = 0.

(A18b)

Further, in the case εs = λ j expression (A7a) implies

β〈� jm |V − λ j P|θs〉 + β〈� jm |Va − λ j Pa |ϕs〉 = 0, m = 1, . . . , η j ;

Since the states |� jm〉(m = 1, . . . , η j ) form a complete set in the space X j
η j , this

implies

βI j
(
V − λ j P

) |θs〉 + βI j
(
Va − λ j Pa

) |ϕs〉 = 0. (A18c)

where I j is a projection operator on the space X j
η j .

Since β �= 0 expressions (A18) can be written in the manifestly Hermitean
form (16a). In the base

{|r〉, |μ〉, |� jm〉} (
r = 1, . . . ρ;μ = 1, . . . σ ; m = 1, . . . η j

)

those expressions form a set of (ρ+σ+η j ) homogenous linear equation in (ρ+σ+η j )

unknowns; ρ unknown coefficients B(s)r that determine component |θs〉 ∈ Xb
ρ of the

eigenstate |�s〉, σ unknown coefficients C (s)
μ that determine component |ϕs〉 ∈ X int

σ

of this eigenstate, and finally η j unknown coefficients D(s)
m that determine the state

|χ j
s 〉 ∈ X j

η j . Once the states |θs〉, |ϕs〉 and |χ j
s 〉 are obtained as a solution to (16a), the

corresponding singular eigenstate is given by (16c). This proves Theorem 2.
For each εs = λ j expression (16a) may have at most ρ + σ + η j linearly inde-

pendent solutions |�sk〉 = |θsk〉 + |ϕsk〉 + |χ j
sk〉(k = 1, 2, . . .). The set of all such

solutions forms a linear space. In analogy to Lemma 1, one can prove Lemma 2.
According to this Lemma the set of all singular eigenstates (16c) that have eigenvalue
εs = λ j forms a linear space that is isomorphic to the linear space spanned by the set
{|�sk〉} (k = 1, 2, . . .). Since (16a) is a (ρ+σ + η j )× (ρ+σ + η j )matrix equation,
one can have at most ρ + σ + η j singular eigenstates with the eigenvalue εs = λ j .

In the special case β = 0 expressions (A18) reduce to

[
Hb − λ j Sb

] |θs〉 = 0, (A19a)
[
λ j Pa − Va

] |ϕs〉 + (
Va − λ j Pa

) |χ j
s 〉 = 0. (A19b)

Equation (A19a) is Eq. (4a) that describes isolated base system Bρ with the con-
dition that parent system An should contain eigenvalue λ j which coincides with an
eigenvalue Er of Bρ . By definition, such a solution of a base system is a singular
solution of a combined system Cn+ρ that consists of mutually non-interactions sub-
systems An and Bρ . Consider now expression (A19b). As implied by the expression

(A15a), if β = 0 one has |ϕs〉 = Iint|�a
s 〉 = Iint|χ j

s 〉. Further, due to expressions (3),

one has Va |χ j
s 〉 = VaIint|χ j

s 〉 and similarly for the operator Pa . Inserting into (A19b)
one finds that this expression is satisfied for each state |χ j

s 〉 ∈ X j
η j . All such states
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are eigenstates of the parent system An , and in addition one can chose each eigenstate
|� j 〉 of An to equal some state |χ j

s 〉. In conclusion, if β = 0 each eigenstate |� j 〉 of
a parent system An is a singular eigenstate of the combined system Cn+ρ . According
to the definition of singular solutions of the modified system this is trivially obvious.
If there is no interaction between the subsystems An and Bρ of the combined system
Cn+ρ , each eigenstate |� j 〉 of the system An is at the same time an eigenstate of the
combined system Cn+ρ . Moreover this eigenstate has eigenvalue εs = λ j ∈ {λi }, and
hence it is by definition singular solution of the combined system.

Consider now Theorem 2a. Each singular eigenstate |�s〉 is either strongly singular
or weakly singular. By definition, strongly singular eigenstates have no Xb

ρ and no X int
σ

component. On the other hand, each weakly singular eigenstate |�s〉 satisfies either
Ib|�s〉 �= 0 and/or Iint|�s〉 �= 0. In addition, each weakly singular eigenstate should
be orthogonal to all strongly singular eigenstates.

Expressions (A18) and (A7b) imply that strongly singular eigenstates satisfy expres-
sions (19). Those expressions can be written in the explicit form (20). This is a set
of (σ + ρ) homogenous linear equations in η j unknown coefficients D(s)

m . Hence if
η j > σ + ρ one has at least η j − σ − ρ linearly independent strongly singular
eigenstates with the eigenvalue εs = λ j . According to (A15a), each strongly singular

eigenstate with the eigenvalue εs = λ j is contained in the space X j
η j .

Consider now weakly singular eigenstates with the eigenvalue εs = λ j . Each such

eigenstate is given by the expression (16c) where the states |θs〉, |ϕs〉 and |χ j
s 〉 satisfy

(16a) and where either |θs〉 �= 0 and/or |ϕs〉 �= 0. In addition, each weakly singular
eigenstate must be orthogonal to all strongly singular eigenstates. One finds that the
set of all weakly singular eigenstates with the eigenvalue λ j forms a linear space.
Since there are at most σ + ρ + η j linearly independent singular eigenstates with the
eigenvalue εs = λ j , and since if η j > σ + ρ one has at least η j − σ − ρ linearly
independent strongly singular eigenstates with this eigenvalue, one may have at most
2(σ +ρ) linearly independent weakly singular eigenstates with this eigenvalue. How-
ever, this estimate can be further improved. According to Lemma 3, one may have at
most (σ + ρ) linearly independent weakly singular eigenstates with the eigenvalue
εs = λ j :

Proof of Lemma 3 Let |�s1〉 and |�s2〉 be two weakly singular eigenstates that have
the same eigenvalue εs = λ j . Let further those eigenstates have the same Xb

ρ and
X int
σ components, i.e. let |θs1〉 = |θs2〉 and |ϕs1〉 = |ϕs2〉. According to (16c), differ-

ence |�s〉 = |�s1〉 − |�s2〉 of the corresponding weakly singular eigenstates satisfies
|�s〉 = |χ j

s1〉− |χ j
s2〉. Since the state |�s〉 contains no Xb

ρ and no X int
σ component, this

state must be strongly singular eigenstate of the modified system. However, since the
set of all weakly singular eigenstates associated with the eigenvalue λ j forms a linear
space, linear combination |�s〉 = |�s1〉 − |�s2〉 of weakly singular eigenstates |�s1〉
and |�s2〉 must be weakly singular eigenstate. Those two conditions imply |�s〉 = 0
and hence |χ j

s1〉 = |χ j
s2〉. In conclusion, if two weakly singular eigenstates associated

with the same eigenvalue λ j have the same Xb
ρ and the same X int

σ components, they

must also have the same X j
η j component. X j

η j component |χ j
s 〉 of the weakly singular
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eigenstate |�s〉 is hence uniquely determined by its Xb
ρ and X int

σ components. This
proves Lemma 3. ��

Since Xb
ρ is ρ-dimensional while X int

σ is σ -dimensional, above lemma implies that
one may have at most (ρ + σ) linearly independent weakly singular eigenstates with
the eigenvalue εs = λ j . This completes the proof of Theorem 2a.
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